<td id="wa4yw"><option id="wa4yw"></option></td>
  • <td id="wa4yw"><kbd id="wa4yw"></kbd></td><noscript id="wa4yw"><source id="wa4yw"></source></noscript>
    <bdo id="wa4yw"><kbd id="wa4yw"></kbd></bdo><input id="wa4yw"></input>
    <table id="wa4yw"><kbd id="wa4yw"></kbd></table>
  • <td id="wa4yw"><option id="wa4yw"></option></td>
    <option id="wa4yw"></option>
  • <table id="wa4yw"></table>
  • 發布時間:2020-06-15 11:34 原文鏈接: PCR技術概述

    聚合酶鏈式反應(Polymerase Chain Reaction,PCR)技術是基因擴增技術的一次重大革新,是分子生物學發展史中的一個重要里程碑。使用PCR擴增技術,可以將極微量的靶DNA片段特異地擴增上百萬倍,大大提高了對DNA分子的分析和檢測能力。PCR技術具有敏感度高、特異性強、快速簡便等優點,在醫學、遺傳學、法醫學、微生物學、食品檢驗、衛生檢驗等眾多領域中具有巨大的應用價值和廣闊的發展前景。
       

    耐熱DNA聚合酶的應用是PCR技術的核心。根據是否具有3’→5’端外切酶活性,耐熱DNA聚合酶通常分為無校讀活性和有校讀活性兩類。無校讀活性的DNA聚合酶(以Taq 酶為代表)具有較高的擴增效率,但由于缺乏校讀活性,容易發生堿基錯配,故產物中點突變較多。Taq DNA聚合酶還具有末端轉移酶活性,可在PCR產物的3’末端非特異地添加堿基,因單個A突出堿基的比例最高,故PCR產物可直接與含有3’末端突出T堿基的載體連接(即TA克隆),方便PCR產物的克隆、擴增和測序。然而,TaqDNA聚合酶在PCR反應第一步升溫過程中即可催化錯配引物延伸或引物二聚體形成,因而導致非特異性擴增,影響目的片段的合成量。針對這一現象設計的熱啟動Taq DNA聚合酶,在低溫時其聚合酶活性被抑制,通過高溫變性,聚合酶的活性恢復,催化特異性結合的引物擴增,因而提高了目的片段的特異性和產量。另一類有校讀活性的DNA聚合酶(以Pfu為代表)可選擇性地去除錯誤摻入的dNTP,維持DNA鏈的正確延伸;然而其擴增效率通常低于Taq DNA聚合酶,特別是對于長片段DNA鏈的延伸能力較差。基于上述兩類酶的特點,可將適量的Taq DNA聚合酶與任意一種有校讀活性的DNA聚合酶混合,在適當的反應緩沖液體系中,可獲得保真性與擴增性能介于上述兩類酶之間的混合酶,用于長片段以及復雜模板的高保真擴增。
     

    PCR實驗受諸多因素的影響。優質的商業化耐熱DNA聚合酶及其配套緩沖液通常可以滿足絕大多數DNA片段擴增的需要。首先應根據模板的性質(基因組、cDNA、質粒等)和目的片段的大小、GC含量、有無二級結構等,選擇合適的DNA聚合酶(參見GenStar? PCR產品選擇指南)。對于難于擴增的片段,應針對不同的模板、引物,優化反應條件,以獲得最佳的擴增效率(詳見“常規PCR反應的優化方法)。
     

    A. 模板用量:以50 μl反應體系為例
    ? 人基因組DNA:0.1~1.0 μg
    ? 大腸桿菌基因組DNA:10~100 ng
    ? λ DNA:0.5~5 ng
    ? 質粒DNA:0.1~10 ng
     

    B. 引物設計原則:
    ? 引物長度要滿足特異性需要,一般可在18~25個堿基之間;擴增長片段時最好在24~30個堿基之間;
    ? (G+C)%含量應盡量控制在40~60%,兩條引物的(G+C)%含量應盡量接近;
    ? 盡量避免相同堿基連續出現三次以上,3’端應避免使用A或T;
    ? 避免引物內部自身配對形成二級結構;
    ? 正反向引物之間應避免配對堿基,尤其是3’端的三個堿基,否則易生成引物二聚體(Primer dimer);
    ? 兩條引物的Tm值應盡量接近,最好相差不超過5oC;
    ? 引物Tm值的計算方法:
    20 nt以下:Tm = 2x(A + T)+ 4x(G+C)
    20 nt以上:Tm = 81.5+0.41x(G+C%)-600/nt(nt:引物的堿基數)
     

    C. 引物用量:
    ? 0.1~1.0 μM,通常可以0.2 μM起始,根據體系不同調整用量;
    ? 使用簡并引物、隨機引物時,需增加引物總量以彌補產量損失;但隨著引物量加大,特異性將降低;
    ? 模板較大較多,或結構較復雜(如人基因組DNA)時,需減少引物用量以提高特異性;
    ? 模板較小較少(如質粒模板)時,增加引物用量可提高產量。


    相關文章

    先達基因核酸檢測技術突破!現場檢測全程僅需10分鐘

    全球新冠疫情爆發以來,原本只能在專業實驗室開展的核酸檢測逐步為大眾所認知,而對于疫情控制需要現場快速檢測的緊迫需求也驅動著全球診斷企業加速技術革新。例如,美國CueHealth成功開發了小型、便捷核酸......

    前列腺癌患者選擇哪種靶向治療,驗一下血便知曉

    近年來,晚期前列腺癌的治療手段迅速發展,每年都有新的治療藥物上市。特別是去勢抵抗性前列腺癌(CRPC),多種療法都獲得了不同程度的成功。如今通過abiraterone或enzalutamide來抑制雄......

    PCR技術盤點

    PCR技術的基本原理類似于DNA的天然復制過程,由變性--退火--延伸三個基本反應步驟構成:模板DNA的變性,模板DNA與引物的退火(復性),引物的延伸。重復循環變性--退火--延伸三過程,就可獲得更......

    納米粒子助力超越經典PCR技術

    最近,在國際知名學術期刊《Small》發表的一項研究中,研究人員成功地應用一種新的定性和定量方法,來檢測利什曼原蟲(Leishmaniainfantum)動基體(kinetoplast,是利什曼原蟲獨......

    合肥研究院開展數字定量PCR技術技術講座

    5月20日,中國科學院合肥物質科學研究院技術生物與農業工程研究所邀請南京潤亞生物科技發展有限責任公司技術總監圍繞數字定量聚合酶鏈式反應技術(簡稱PCR技術)進行專題培訓。培訓老師首先闡述了PCR技術的......

    科學家采用PCR快速篩選法分離肉制品中的腸球菌

    據sciencedirect數據庫消息,2013年4月《國際食品微生物雜志》刊登一項采用PCR快速篩選法分離肉與發酵肉制品中腸球菌的研究,研究人員利用此法成功分離出了29個腸球菌菌株。腸球菌主要存在于......

    淺析大規模酵母雙雜交技術的發展基礎

    酵母雙雜交系統是在真核模式生物酵母中進行的,可以研究活細胞內蛋白質的相互作用,對蛋白質之間微弱的、瞬間作用也能夠通過報告基因的表達產物檢測得到。酵母雙雜交文庫構建是篩庫的前提,可用于目的蛋白的互作蛋白......

    PCR技術基本原理

    PCR技術基本原理PCR技術的基本原理:類似于DNA的天然復制過程,其特異性依賴于與靶序列兩端互補的寡核苷酸引物。PCR由變性--退火--延伸三個基本反應步驟構成:①模板DNA的變性:模板DNA經加熱......

    癌癥基因檢測突破性PCR技術

    Transgenomic公司推出了名為ICECOLD-PCR的突變檢測技術,該項突破性癌癥基因檢測技術使用已安裝在世界各地實驗室的標準測序設備,將無與倫比的敏感性和完整的DNA突變檢測巧妙的結合于一體......

    PCR技術的基本原理及特點

    內容摘要:PCR的基本原理是以擬擴增的DNA分子為模板,以一對分別與模板,末端相互補的寡核苷酸片段為引物,在DNA聚合酶的作用下,按照半保留復制的機制沿著模板鏈延伸直至完成新的DNA合成,不斷重復這一......

    <td id="wa4yw"><option id="wa4yw"></option></td>
  • <td id="wa4yw"><kbd id="wa4yw"></kbd></td><noscript id="wa4yw"><source id="wa4yw"></source></noscript>
    <bdo id="wa4yw"><kbd id="wa4yw"></kbd></bdo><input id="wa4yw"></input>
    <table id="wa4yw"><kbd id="wa4yw"></kbd></table>
  • <td id="wa4yw"><option id="wa4yw"></option></td>
    <option id="wa4yw"></option>
  • <table id="wa4yw"></table>
  • XVideos