Cell子刊解析癌癥形成關鍵信號
來自Salk生物研究學院的一個科學家小組,確定了一個重要的細胞周期調控信號遭到破壞,導致癌細胞增殖的原因。他們獲得的端粒相關研究發現,為找到預防措施對抗癌癥、老化及其他疾病提供了一個有潛力的靶點。研究結果發表在7月11日的《分子細胞》(Molecular Cell)雜志上。 端粒是指位于染色體兩末端的一段DNA片段,就像鞋帶末端的塑膠頭,它可以防止染色體磨損以及彼此粘連,而導致遺傳信息混亂,促使癌癥發生。它們對于DNA復制、腫瘤抑制及衰老均至關重要。人類細胞每分裂一次,它的端粒就會變得更短。當它們變得過短時,細胞不再分裂,變得不活躍,發生“衰老”或死亡。細胞可通過激活端粒酶來逃避這一命運,端粒酶可以阻止端粒變短,使得細胞能夠繼續生長和分裂。細胞失控性生長是癌細胞的一個主要標志,在胰腺癌、骨癌、前列腺癌、膀胱癌、肺癌、腎癌和頭頸部癌中,人們均發現有縮短的端粒。 “正常細胞衰老過程中隨著端粒縮短,它們會激活一種D......閱讀全文
研究創新性提出了癌癥免疫調控框架
近日,四川大學華西醫院泌尿外科教授楊璐團隊以創新性視角系統梳理腸道菌群代謝物在腫瘤免疫調控中的作用機制,首次提出“代謝物–免疫通路–腫瘤”的整合框架。該研究為尋找新的免疫調節靶點、設計代謝物導向的聯合治療策略提供了系統的理論支撐和圖譜式參考。相關綜述文章于12月3日發表于《分子癌》上。綜述圍繞“腸道
人類老化和癌癥研究新方向
由德州農工大學和辛辛那提大學的科學家組成的研究小組發現,在DNA結構和與端粒的關系,以及它們如何影響細胞老化和癌癥方面,一種常見的雜草-擬南芥和人類的癌細胞能夠提供一些非常特殊的信息。 在這項研究中,小組人員檢測了擬南芥(Arabidopsis)的端粒,發現了一套新的重要的端粒蛋白。然后在
Science子刊:揭示一種調節癌細胞端粒維持長度的新機制
端粒是由非編碼DNA組成的染色體末端。當正常細胞分裂時,它們的端粒會變短,直到細胞不能再分裂。然而,癌細胞可以保持其端粒的長度,通過激活兩種過程---端粒酶或端粒延伸替代(alternative lengthening of telomeres, ALT)通路---中的一種來無限期地延長其壽命。
首個石榴端粒到端粒參考基因組圖完成
近日,中國農業科學院鄭州果樹研究所(以下簡稱鄭果所)特色漿果與干果種質改良課題組在國際期刊《植物生物技術雜志》(Plant Biotechnology Journal)上發表研究論文,該研究組裝了首個石榴端粒到端粒(T2T)參考基因組圖,揭示了控制石榴果皮顏色和籽粒硬度等重要經濟性狀形成的遺傳機
迄今最清晰端粒酶結構問世:冷凍電鏡技術功不可沒
據英國《自然》雜志25日發表的一篇論文,美國科學家團隊使用冷凍電鏡技術,以迄今最高的分辨率確定了端粒酶的結構。鑒于端粒酶與癌癥和老化關系密切,該發現代表著人類向開發端粒酶相關療法邁出了重要一步。 時至今日,科學家并不能完全肯定衰老和癌癥的真正起因,而端粒功能的發現,被認為是開拓了一條抗衰老與癌
最清晰端粒酶結構問世-向開發癌癥新療法邁出重要一步
據英國《自然》雜志4月25日發表的一篇論文,美國科學家團隊使用冷凍電鏡技術,以迄今最高的分辨率確定了端粒酶的結構。鑒于端粒酶與癌癥和老化關系密切,該發現代表著人類向開發端粒酶相關療法邁出了重要一步。 時至今日,科學家并不能完全肯定衰老和癌癥的真正起因,而端粒功能的發現,被認為是開拓了一條抗衰老
迄今最清晰端粒酶結構圖像問世
據英國《自然》雜志25日發表的一篇論文,美國科學家團隊使用冷凍電鏡技術,以迄今最高的分辨率確定了端粒酶的結構。鑒于端粒酶與癌癥和老化關系密切,該發現代表著人類向開發端粒酶相關療法邁出了重要一步。時至今日,科學家并不能完全肯定衰老和癌癥的真正起因,而端粒功能的發現,被認為是開拓了一條抗衰老與癌癥新療法
中南大學長江學者講座教授最新Molecular-Cell文章
中南大學,美國匹茲堡大學醫學院等處的研究人員首次發現了一種新的端粒調控機制,他們利用一種特異的端粒氧化損傷誘導系統,發現有絲分裂基因(NIMA)激酶家族成員Nek7,在端粒出現損傷時,會被召集到端粒附近,穩定TRF1。這項研究推動了端粒的調控機制的探索,為衰老和衰老相關疾病機制的闡述奠定了基礎和
生化與細胞所研究發現端粒酶保護端粒的機制
端粒是位于真核生物線性染色體末端的由DNA和蛋白質組成的復合物結構,它對于基因組的完整性以及染色體的穩定性發揮著至關重要的作用,端粒DNA長度以及其結構的維持與細胞衰老和癌癥發生密切相關。在有端粒酶活性的細胞中,端粒酶途徑是端粒DNA長度維持的主要機制;當端粒酶缺失時,細胞也可以通
中國首家端粒檢測機構在我省啟動運營
衰老領域頂級科學家團隊助力 日前,在南通市舉行的一場抗衰老論壇現場,我國首個端粒和端粒酶檢測機構宣布啟動運營。據悉,這是繼美國和西班牙之后,全球第三個真正能夠大規模精準檢測及分析端粒長度的機構。通過端粒和端粒酶檢測,能精準發現細胞早衰和早期癌癥發生等健康隱患。 端粒和端粒酶有什么神奇?當天的
端粒的結構解析
端粒是短的多重復的非轉錄序列(TTAGGG)及一些結合蛋白組成特殊結構,除了提供非轉錄DNA的緩沖物外,它還能保護染色體末端免于融合和退化,在染色體定位、復制、保護和控制細胞生長及壽命方面具有重要作用,并與細胞凋亡、細胞轉化和永生化密切相關。當細胞分裂一次,每條染色體的端粒就會逐次變短一些。構成端粒
端粒的結構解析
端粒是短的多重復的非轉錄序列(TTAGGG)及一些結合蛋白組成特殊結構,除了提供非轉錄DNA的緩沖物外,它還能保護染色體末端免于融合和退化,在染色體定位、復制、保護和控制細胞生長及壽命方面具有重要作用,并與細胞凋亡、細胞轉化和永生化密切相關。當細胞分裂一次,每條染色體的端粒就會逐次變短一些。構成端粒
端粒DNA主要組成
端粒DNA是由簡單的DNA高度重復序列組成的,染色體末端沿著5'到3' 方向的鏈富含 GT。在酵母和人體中,端粒序列分別為C1-3A/TG1-3和TTAGGG/CCCTAA,并有許多蛋白與端粒DNA結合。端粒DNA主要功能有:第一,保護染色體不被核酸酶降解;第二,防止染色體相互融合;
端粒的結構解析
端粒是短的多重復的非轉錄序列(TTAGGG)及一些結合蛋白組成特殊結構,除了提供非轉錄DNA的緩沖物外,它還能保護染色體末端免于融合和退化,在染色體定位、復制、保護和控制細胞生長及壽命方面具有重要作用,并與細胞凋亡、細胞轉化和永生化密切相關。當細胞分裂一次,每條染色體的端粒就會逐次變短一些。構成端粒
關于端粒的組成
端粒DNA是由簡單的DNA高度重復序列組成的,染色體末端沿著5'到3' 方向的鏈富含 GT。在酵母和人體中,端粒序列分別為C1-3A/TG1-3和TTAGGG/CCCTAA,并有許多蛋白與端粒DNA結合。 端粒DNA主要功能有: 第一,保護染色體不被核酸酶降解; 第二,防止
端粒的研究應用
端粒長度的維持是細胞持續分裂的前提條件 [1] 。在旺盛分裂或需要保持分裂潛能的細胞,如生殖細胞,干細胞和大多數癌細胞(~85%)中,端粒酶(Telomerase)被激活,它在端粒末端添加端粒序列,保證這些細胞中端粒長度的穩定,維持細胞的持續分裂能力。 細胞中有端粒酶的存在并不能保證端粒的延伸
端粒的功能簡介
穩定染色體末端結構,防止染色體間末端連接,并可補償滯后鏈5'末端在消除RNA引物后造成的空缺。 組織培養的細胞證明,端粒在決定動植物細胞的壽命中起著重要作用,經過多代培養的老化細胞端粒變短,染色體也變得不穩定。 細胞分裂次數越多,其端粒磨損越多,細胞壽命越短。
端粒的結構組成
端粒DNA是由簡單的DNA高度重復序列組成的,染色體末端沿著5'到3' 方向的鏈富含 GT。在酵母和人體中,端粒序列分別為C1-3A/TG1-3和TTAGGG/CCCTAA,并有許多蛋白與端粒DNA結合。端粒DNA主要功能有:第一,保護染色體不被核酸酶降解;第二,防止染色體相互融合;
端粒的結構解析
端粒是短的多重復的非轉錄序列(TTAGGG)及一些結合蛋白組成特殊結構,除了提供非轉錄DNA的緩沖物外,它還能保護染色體末端免于融合和退化,在染色體定位、復制、保護和控制細胞生長及壽命方面具有重要作用,并與細胞凋亡、細胞轉化和永生化密切相關。當細胞分裂一次,每條染色體的端粒就會逐次變短一些。
癌細胞復制過程的關鍵因子
所有的癌癥都有“無限復制的潛力”。最近,科學家鑒定了某些侵襲性癌細胞復制過程中的一個新“參與因子”。 這些發現有望使我們確定新的癌癥靶點,并最終帶來新的癌癥療法。相關研究結果發表在《Cell Reports》。 端粒是一段重復的DNA序列,覆蓋在每個人的染色體末端,作為一道屏障保護著基因組。每
首次成功靶定“通用”腫瘤靶標
端粒酶是一種幾乎“通用”的腫瘤靶標,因為它在絕大多數的腫瘤中是被激活的。盡管端粒酶在癌癥中的重要作用,但是目前在臨床上,還沒有靶定這種酶的治療方法。特別是,由于缺乏可用的結構信息,端粒酶小分子抑制劑的研究和開發,已經遠遠落后于任何其他方法。基于結構的藥物設計,是一個強大的工具,可開發高度有效的特
PNAS:端粒長度檢測可篩查短端粒相關的疾病風險
“美國至少有5000-1000人患與短端粒有關的疾病。這些疾病影響的人數與特定類型的白血病一樣多,我們認為患病率可能高于目前的估計。”論文第一作者、約翰霍普金斯Kimmel癌癥中心腫瘤學教授Mary Armanios博士表示,“有一些遺傳性疾病的特征是端粒極短,比如說肺纖維化或骨髓功能衰竭。”來
PNAS:端粒長度檢測可篩查短端粒相關的疾病風險
“美國至少有5000-1000人患與短端粒有關的疾病。這些疾病影響的人數與特定類型的白血病一樣多,我們認為患病率可能高于目前的估計。”論文第一作者、約翰霍普金斯Kimmel癌癥中心腫瘤學教授Mary Armanios博士表示,“有一些遺傳性疾病的特征是端粒極短,比如說肺纖維化或骨髓功能衰竭。”來
PNAS:端粒長度檢測可篩查短端粒相關的疾病風險
短端粒相關疾病 “美國至少有5000-1000人患與短端粒有關的疾病。這些疾病影響的人數與特定類型的白血病一樣多,我們認為患病率可能高于目前的估計。”論文第一作者、約翰霍普金斯Kimmel癌癥中心腫瘤學教授Mary Armanios博士表示,“有一些遺傳性疾病的特征是端粒極短,比如說肺纖維化或
PNAS:端粒長度檢測可篩查短端粒相關的疾病風險
短端粒相關疾病 “美國至少有5000-1000人患與短端粒有關的疾病。這些疾病影響的人數與特定類型的白血病一樣多,我們認為患病率可能高于目前的估計。”論文第一作者、約翰霍普金斯Kimmel癌癥中心腫瘤學教授Mary Armanios博士表示,“有一些遺傳性疾病的特征是端粒極短,比如說肺纖維化或
PNAS:端粒長度檢測可篩查短端粒相關的疾病風險
“美國至少有5000-1000人患與短端粒有關的疾病。這些疾病影響的人數與特定類型的白血病一樣多,我們認為患病率可能高于目前的估計。”論文第一作者、約翰霍普金斯Kimmel癌癥中心腫瘤學教授Mary Armanios博士表示,“有一些遺傳性疾病的特征是端粒極短,比如說肺纖維化或骨髓功能衰竭。”來
端粒DNA-序列的概念
端粒DNA 序列(telomere DNA sequence,TEL)端粒的功能是與端粒酶結合,完成染色體末端復制。端粒酶以其自身的RNA 為模板,在染色體端部添加上端粒的重復序列。作為模板的RNA 比較短,含有1.5 個端粒重復單元。端粒結構還能防止染色體融合及降解。端粒是保護DNA分子中的基因的
關于端粒的基本介紹
端粒(英文名:Telomere)是存在于真核細胞線狀染色體末端的一小段DNA-蛋白質復合體,端粒短重復序列與端粒結合蛋白一起構成了特殊的“帽子”結構,作用是保持染色體的完整性和控制細胞分裂周期。端粒、著絲粒和復制原點是染色體保持完整和穩定的三大要素。 端粒的長度反映細胞復制史及復制潛能,被稱作
端粒的結構和作用
端粒(Telomere)是真核細胞染色體末端的特殊結構。人端粒是由6個堿基重復序列(TTAGGG)和結合蛋白組成。端粒有重要的生物學功能,可穩定染色體的功能,防止染色體DNA降解、末端融合,保護染色體結構基因DNA,調節正常細胞生長。
上海交大JBC解析癌癥代謝調控新機制
來自上海交通大學的研究人員在新研究中證實,在癌細胞中PIM2可直接磷酸化PKM2促進糖酵解,這一研究發現在線發表在10月18日的《生物化學雜志》(JBC)上。 上海交通大學的黃鋼(Gang Huang)教授是這篇論文的通訊作者。其主要研究方向包括腫瘤代謝機理與分子影像評價,腫瘤療效評價