<td id="wa4yw"><option id="wa4yw"></option></td>
  • <td id="wa4yw"><kbd id="wa4yw"></kbd></td><noscript id="wa4yw"><source id="wa4yw"></source></noscript>
    <bdo id="wa4yw"><kbd id="wa4yw"></kbd></bdo><input id="wa4yw"></input>
    <table id="wa4yw"><kbd id="wa4yw"></kbd></table>
  • <td id="wa4yw"><option id="wa4yw"></option></td>
    <option id="wa4yw"></option>
  • <table id="wa4yw"></table>

  • 四川大學原子力顯微鏡公開招標

    項目概況原子力顯微鏡 招標項目的潛在投標人應在網絡獲取或成都市青羊區陜西街195號國棟中央商務大廈20樓A座獲取招標文件,并于2025年08月06日 10點00分(北京時間)前遞交投標文件。一、項目基本情況項目編號:川宏采招【2025】07-08號項目名稱:原子力顯微鏡預算金額:195.000000 萬元(人民幣)最高限價(如有):195.000000 萬元(人民幣)采購需求:詳見附件合同履行期限:國產產品,合同簽訂后45日歷日內(完成全部交貨),所有技術文件資料包括操作說明書、產品合格證、裝箱清單,應一并交與采購人驗收。進口產品,合同簽訂后120日歷日內(完成全部交貨),所有技術文件資料包括操作說明書、產品合格證、裝箱清單,應一并交與采購人驗收。本項目( 不接受 )聯合體投標。二、申請人的資格要求:1.滿足《中華人民共和國政府采購法》第二十二條規定;2.落實政府采購政策需滿足的資格要求:無3.本項目的特定......閱讀全文

    原子力顯微鏡工作模式

    原子力顯微鏡的工作模式是以針尖與樣品之間的作用力的形式來分類的。主要有以下3種操作模式:接觸模式(contact mode) ,非接觸模式( non - contact mode) 和敲擊模式( tapping mode)。接觸模式從概念上來理解,接觸模式是AFM最直接的成像模式。AFM 在整個掃描

    原子力顯微鏡的好處

    我們前面已經提到,原子力顯微鏡的測量依靠的是針尖與物體表面之間的相互作用,而這種相互作用是廣泛存在于各種分子或者原子之間的,所以原子力顯微鏡可以直接測量幾乎各種表面的結構而不需要像電子顯微鏡那樣做特殊的樣品處理,同時原子力顯微鏡也不像電子顯微鏡那樣需要一個高真空的環境。這不僅節省了大量的時間精力,而

    原子力顯微鏡原理概述

    原子力顯微鏡原理概述AFM 是在STM 基礎上發展起來的,是通過測量樣品表面分子(原子)與AFM 微懸臂探針之間的相互作用力,來觀測樣品表面的形貌。AFM 與STM 的主要區別是以1 個一端固定而另一端裝在彈性微懸臂上的尖銳針尖代替隧道探針,以探測微懸臂受力產生的微小形變代替探測微小的隧道電流。其工

    原子力顯微鏡儀器結構

    在原子力顯微鏡(Atomic Force Microscope,AFM)的系統中,可分成三個部分:力檢測部分、位置檢測部分、反饋系統。力檢測部分在原子力顯微鏡(AFM)的系統中,所要檢測的力是原子與原子之間的范德華力。所以在本系統中是使用微小懸臂(cantilever)來檢測原子之間力的變化量。微懸

    原子力顯微鏡測量架構

    原子力顯微鏡測量架構AFM 的探針一般由懸臂梁及針尖所組成,主要原理是由針尖與試片間的原子作用力,使懸臂梁產生微細位移,以測得表面結構形狀,其中最常用的距離控制方式為光束偏折技術。AFM 的主要結構可分為探針、偏移量偵測器、掃描儀、回饋電路及計算機控制系統五大部分。AFM 探針長度只有幾微米長,探針

    掃描原子力顯微鏡(AFM)

    掃描原子力顯微鏡(AFM)可以對納米薄膜進行形貌分析,分辨率可以達到幾十納米,比STM差,但適合導體和非導體樣品,不適合納米粉體的形貌分析。

    原子力顯微鏡工作原理

    如下:原子力顯微鏡的基本原理是:將一個對微弱力極敏感的微懸臂一端固定,另一端有一微小的針尖,針尖與樣品表面輕輕接觸,由于針尖尖端原子與樣品表面原子間存在極微弱的排斥力,通過在掃描時控制這種力的恒定。帶有針尖的微懸臂將對應于針尖與樣品表面原子間作用力的等位面而在垂直于樣品的表面方向起伏運動。利用光學檢

    原子力顯微鏡原理概述

      AFM 是在STM 基礎上發展起來的,是通過測量樣品表面分子(原子)與AFM 微懸臂探針之間的相互作用力,來觀測樣品表面的形貌。AFM 與STM 的主要區別是以1 個一端固定而另一端裝在彈性微懸臂上的尖銳針尖代替隧道探針,以探測微懸臂受力產生的微小形變代替探測微小的隧道電流。  其工作原理:將一

    原子力顯微鏡工作模式

    ?原子力顯微鏡工作模式? ? ? ?原子力顯微鏡的工作模式是以針尖與樣品之間的作用力的形式來分類的。主要有以下3種操作模式:接觸模式、非接觸模式和敲擊模式。? ? ? ?1、接觸模式從概念上來理解,接觸模式是AFM最直接的成像模式。正如名字所描述的那樣,AFM在整個掃描成像過程之中,探針針尖始終與樣

    如何選購原子力顯微鏡

     1.了解原子探針顯微鏡的基本原理??  掃描隧道顯微鏡的原理??  掃描隧道顯微鏡是根據量子力學中的隧道效應原理,通過探測固體表面原子中電子的隧道電流來分辨固體表面形貌的新型顯微裝置。?  根據量子力學原理,由于電子的隧道效應,金屬中的電子并不完全局限于金屬表面之內,電子云密度并不是在表面邊界處突

    原子力顯微鏡成像模式

    ? ? 原子力顯微鏡是顯微鏡中的一種類型,應用范圍十分廣泛。是一種可用來研究包括絕緣體在內的固體材料表面結構的分析儀器。原子力顯微鏡三種成像模式  當原子力顯微鏡成像模式的針尖與樣品表面原子相互作用時,通常有幾種力同時作用于微懸臂,其中最主要的是范德瓦爾斯力。當針尖與樣品表面原子相互靠近時,它們先互

    原子力顯微鏡(AFM)分類

      在原子力顯微鏡(AFM)成像模式中,根據針尖與樣品間作用力的不同性質可分為:接觸模式,非接觸模式,輕敲模式。  (1)接觸成像模式:針尖在掃描過程中始終同樣品表面接觸。  針尖和樣品間的相互作用力為接觸原子間電子的庫侖排斥力(其力大小為10-8~10-6N)。優點為圖像穩定,分辨率高,缺點為由于

    原子力顯微鏡及其應用

    ?原子力顯微鏡及其應用????? 原子力顯微鏡是以掃描隧道顯微鏡基本原理發展起來的掃描探針顯微鏡。原子力顯微鏡的出現無疑為納米科技的發展起到了推動作用。以原子力顯微鏡為代表的掃描探針顯微鏡是利用一種小探針在樣品表面上掃描,從而提供高放大倍率觀察的一系列顯微鏡的總稱。原子力顯微鏡掃描能提供各種類型樣品

    原子力顯微鏡的原理

    原子力顯微鏡:是一種利用原子,分子間的相互作用力來觀察物體表面微觀形貌的新型實驗技術.它有一根納米級的探針,被固定在可靈敏操控的微米級彈性懸臂上.當探針很靠近樣品時,其頂端的原子與樣品表面原子間的作用力會使懸臂彎曲,偏離原來的位置.根據掃描樣品時探針的偏離量或振動頻率重建三維圖像.就能間接獲得樣品表

    計量型原子力顯微鏡

    ? ? ?第一臺在納米測量中,在中等測量范圍內,具有微型光纖傳導激光干涉三維測量系統、可自校準和進行絕對測量的計量型原子力顯微鏡。它的誕生,可使目前用于納米技術研究的掃描隧道顯微鏡定量化,并將其所測量的納米量值直接與米定義相銜接。使人們更加準確地了解納米范圍內的各種物理現象,并對它們進行更精確的分析

    原子力顯微鏡使用分析

    實驗概要了解原子力顯微鏡的基本結構和原理。掌握原子力顯微鏡對固體和粉末樣品的要求及制作方法。掌握原子力顯微鏡使用方法。實驗原理原子力顯微鏡的優點是:有較高的放大倍數,20-20萬倍之間連續可調;有很大的景深,視野大,成像富有立體感,可直接觀察各種試樣凹凸不平表面的細微結構;試樣制備簡單。1. 儀器結

    原子力顯微鏡的特點

    原子力顯微鏡的特點  1.高分辨力能力遠遠超過掃描電子顯微鏡(SEM),以及光學粗糙度儀。樣品表面的三維數據滿足了研究、生產、質量檢驗越來越微觀化的要求。  3.應用范圍廣,可用于表面觀察、尺寸測定、表面粗糙測定、顆粒度解析、突起與凹坑的統計處理、成膜條件評價、保護層的尺寸臺階測定、層間絕緣膜的平整

    原子力顯微鏡的優點

    原子力顯微鏡具有許多優點:? ① 不同于電子顯微鏡只能提供二維圖像,AFM提供真正的三維表面圖;? ② AFM不需要對樣品的任何特殊處理,不會對樣品會造成不可逆轉的傷害;? ③ 電子顯微鏡需要運行在高真空條件下,原子力顯微鏡在常壓下甚至在液體環境下都可以良好工作,這樣可以用來研究生物宏觀分子,甚至活

    原子力顯微鏡(AFM)綜述

    原子力顯微鏡(AFM)綜述最早掃描式顯微技術(STM)使我們能觀察表面原子級影像,但是 STM 的樣品基本上要求為導體,同時表面必須非常平整, 而使 STM 使用受到很大的限制。而目前的各種掃描式探針顯微技術中,以原子力顯微鏡(AFM)應用是最為廣泛,AFM 是以針尖與樣品之間的屬于原子級力場作用力

    原子力顯微鏡的由來

      原子力顯微鏡(atomic force microscope, AFM)是一種具有原子分辨率的表面形貌、電磁性能分析的重要儀器。1981年,STM(scanning tunneling microscopy, 掃描隧道顯微鏡)由IBM-Zurich 的Binnig and Rohrer 發明。1

    原子力顯微鏡成像模式

      原子力顯微鏡的主要工作模式有靜態模式和動態模式兩種。在靜態模式中,懸臂從樣品表面劃過,從懸臂的偏轉可以直接得知表面的高度圖。在動態模式中,懸臂在其基頻或諧波或附近振動,而其振幅、相位和共振與探針和樣品間的作用力相關,這些參數相對外部參考的振動的改變可得出樣品的性質。  接觸模式  在靜態模式中,

    相位式原子力顯微鏡

    相位式原子力顯微鏡(Phase Ima ging Force Microscope)原子力顯微鏡在輕敲式AFM(tapping mode)操作下,量測及回饋因表面抵擋及黏滯力的作用,會引起振動探針的相位改變量,而抵擋及黏滯力的差異為不同材料性質引起,因此有機會用相位差(Phase la g)來觀察表

    原子力顯微鏡工作原理

    一、原子力顯微鏡通過機械探針“觸摸”樣品表面表征其形貌并記錄力學性質。它的工作原理類似人類用手指觸摸物品表面,當探針靠近樣品表面時,探針與樣品表面間會產生一個相互作用力,此作用力會導致懸臂發生偏折。二、激光二極管產生的激光束通過透鏡聚焦到懸臂背面,然后再反射到光電二極管上形成反饋。在掃描樣品時,樣品

    原子力顯微鏡(AFM)概述

    原子力顯微鏡(AFM)概述最早掃描式顯微技術(STM)使我們能觀察表面原子級影像,但是STM 的樣品基本上要求為導體,同時表面必須非常平整, 而使STM 使用受到很大的限制。而目前的各種掃描式探針顯微技術中,以原子力顯微鏡(AFM)應用是最為廣泛,AFM 是以針尖與樣品之間的屬于原子級力場作用力,所

    原子力顯微鏡與掃描力顯微術摩擦力

    ? ? ? 摩擦力顯微鏡(LFM)是在原子力顯微鏡(AFM)表面形貌成像基礎上發展的新技術之一。材料表面中的不同組分很難在形貌圖像中區分開來,而且污染物也有可能覆蓋樣品的真實表面。LFM恰好可以研究那些形貌上相對較難區分、而又具有相對不同摩擦特性的多組分材料表面。圖1 摩擦力顯微鏡掃描及力檢測示意圖

    關于原子力顯微鏡的力檢測部分介紹

      在原子力顯微鏡(AFM)的系統中,所要檢測的力是原子與原子之間的范德華力。所以在本系統中是使用微小懸臂(cantilever)來檢測原子之間力的變化量。微懸臂通常由一個一般100~500μm長和大約500nm~5μm厚的硅片或氮化硅片制成。微懸臂頂端有一個尖銳針尖,用來檢測樣品-針尖間的相互作用

    原子力顯微鏡(AFM)的原理

    原子力顯微鏡(AFM)的基本原理是:將一個對微弱力極敏感的微懸臂一端固定,另一端有一微小的針尖,針尖與樣品表面輕輕接觸,由于針尖尖端原子與樣品表面原子間存在極微弱的排斥力,通過在掃描時控制這種力的恒定,帶有針尖的微懸臂將對應于針尖與樣品表面原子間作用力的等位面而在垂直于樣品的表面方向起伏運動。選擇原

    原子力顯微鏡(AFM)的原理

    原子力顯微鏡/AFM的基本原理是:將一個對微弱力極敏感的微懸臂一端固定,另一端有一微小的針尖,針尖與樣品表面輕輕接觸,由于針尖尖端原子與樣品表面原子間存在極微弱的排斥力,通過在掃描時控制這種力的恒定,帶有針尖的微懸臂將對應于針尖與樣品表面原子間作用力的等位面而在垂直于樣品的表面方向起伏運動.利用光學

    原子力顯微鏡的接觸模式

      在接觸模式下,尖端被“拖動”穿過樣品表面,表面輪廓或者直接使用懸臂的偏轉來測量,或者更常見的是,使用將懸臂保持在恒定位置所需的反饋信號來測量。因為靜態信號的測量容易產生噪聲和漂移,所以使用低剛度懸臂(即具有低彈簧常數k的懸臂)來獲得足夠大的偏轉信號,同時保持低相互作用力。靠近樣品表面,吸引力可能

    原子力顯微鏡其他工作模式

    ?其他模式? ? ? ?除了三種常見的三種工作模式外,原子力顯微鏡還可以進行下面的工作:??? ? ?1、橫向力顯微鏡(LFM)? ? ? ?橫向力顯微鏡(LFM)是在原子力顯微鏡(AFM)表面形貌成像基礎上發展的新技術之一。工作原理與接觸模式的原子力顯微鏡相似。當微懸臂在樣品上方掃描時,由于針尖與

    <td id="wa4yw"><option id="wa4yw"></option></td>
  • <td id="wa4yw"><kbd id="wa4yw"></kbd></td><noscript id="wa4yw"><source id="wa4yw"></source></noscript>
    <bdo id="wa4yw"><kbd id="wa4yw"></kbd></bdo><input id="wa4yw"></input>
    <table id="wa4yw"><kbd id="wa4yw"></kbd></table>
  • <td id="wa4yw"><option id="wa4yw"></option></td>
    <option id="wa4yw"></option>
  • <table id="wa4yw"></table>
  • XVideos