<td id="wa4yw"><option id="wa4yw"></option></td>
  • <td id="wa4yw"><kbd id="wa4yw"></kbd></td><noscript id="wa4yw"><source id="wa4yw"></source></noscript>
    <bdo id="wa4yw"><kbd id="wa4yw"></kbd></bdo><input id="wa4yw"></input>
    <table id="wa4yw"><kbd id="wa4yw"></kbd></table>
  • <td id="wa4yw"><option id="wa4yw"></option></td>
    <option id="wa4yw"></option>
  • <table id="wa4yw"></table>
  • 發布時間:2025-07-14 17:42 原文鏈接: 石墨烯量子點制備研究獲進展

    富勒烯(C60)因獨特的光電、催化和潤滑性能而備受關注。但是,C60在強相互作用的金屬表面難以形成有序的聚合物結構。因此,如何捕捉到C60聚合過程中的關鍵中間體并實現可控轉化是材料合成領域的挑戰。

    近日,中國科學院蘭州化學物理研究所科研團隊聯合瑞士巴塞爾大學、奧地利薩爾茨堡大學的科研人員,在制備石墨烯量子點研究方面取得進展。該團隊結合原位熱退火與非接觸原子力顯微技術,在金屬Pt(111)表面捕獲到穩定的C60二聚體,并揭示了這種二聚體向石墨烯量子點乃至更大尺寸石墨烯片的完整演化路徑。

    研究發現,當在800 K下進行退火時,位于C60分子島邊緣、配位數較低的分子會脫離分子島。這些低配位分子之間隨后發生[2+2]環加成反應,形成啞鈴狀的C60二聚體。研究利用nc-AFM多重掃描技術,在亞分子級直接觀測到該二聚體的結構——由兩個直徑約為1.1 nm的C60單元構成。理論計算證實,Pt(111)表面獨特的能量平衡使得形成的二聚體比分子島內處于低配位狀態的單個C60分子更為穩定。進一步,研究將退火溫度升高至900 K時發現,捕獲到的C60二聚體結構打開碳籠形成石墨烯量子點。這些量子點能夠通過擴展融合得到面積達數十平方納米、具有5×5R0°超晶格結構的石墨烯片。

    研究顯示,C60二聚體的能壘僅為1.08 eV,低于C60分子直接在Pt表面分解所需的能壘。理論分析提出,Pt(111)表面具有中等強度的吸附作用以及獨特的表面陷附效應是形成穩定C60二聚體的關鍵因素。

    相關研究成果發表在《德國應用化學》上。研究工作得到國家自然科學基金、歐洲研究委員會相關項目、瑞士國家自然科學基金的支持。

    論文鏈接


    相關文章

    科學家直接證實鋸齒型石墨烯納米帶本征磁性

    中國科學院上海微系統與信息技術研究所研究員王浩敏團隊聯合上海師范大學副教授王慧山,首次在實驗中直接證實了鋸齒型石墨烯納米帶(zGNRs)的本征磁性,加深了對石墨烯磁性性質的理解,也為開發基于石墨烯的自......

    科學家開發出超穩定高效率量子點液體激光器

    近日,中國科學院大連化學物理研究所研究員吳凱豐團隊在膠體量子點激光研究中取得新進展。團隊采用膠體量子點溶液作為增益介質,通過法布里-珀羅諧振腔耦合及雙脈沖泵浦設計,開發出連續穩定工作10天以上、能量轉......

    石墨烯量子點制備研究獲進展

    富勒烯(C60)因獨特的光電、催化和潤滑性能而備受關注。但是,C60在強相互作用的金屬表面難以形成有序的聚合物結構。因此,如何捕捉到C60聚合過程中的關鍵中間體并實現可控轉化是材料合成領域的挑戰。近日......

    石墨烯量子點制備研究獲進展

    富勒烯(C60)因獨特的光電、催化和潤滑性能而備受關注。但是,C60在強相互作用的金屬表面難以形成有序的聚合物結構。因此,如何捕捉到C60聚合過程中的關鍵中間體并實現可控轉化是材料合成領域的挑戰。近日......

    石墨烯量子點制備研究獲進展

    富勒烯(C60)因獨特的光電、催化和潤滑性能而備受關注。但是,C60在強相互作用的金屬表面難以形成有序的聚合物結構。因此,如何捕捉到C60聚合過程中的關鍵中間體并實現可控轉化是材料合成領域的挑戰。近日......

    石墨烯合成迎新進展

    近日,中國科學院蘭州化學物理研究所的科研團隊與瑞士巴塞爾大學、奧地利薩爾茨堡大學的學者攜手,在富勒烯(C60)的研究上取得了重大進展,成功揭示了富勒烯如何轉化為石墨烯(一種由單層碳原子組成的二維材料,......

    學者開發出分離性能可切換的石墨烯智能分離膜

    智能膜與主動分離技術是膜研究的新興領域,能夠在外界刺激下實現分離性能的可逆調控。近日,清華大學深圳國際研究生院副教授蘇陽、山東理工大學副教授趙金平、大連理工大學副教授張寧等合作發現,將氧化石墨烯和石墨......

    石墨烯中首次演示量子自旋霍爾效應

    荷蘭代爾夫特理工大學科學家首次在無需外部磁場的條件下,觀測到石墨烯中的量子自旋流。這一突破性發現為自旋電子學的發展提供了關鍵支持,標志著向實現量子計算和先進存儲設備邁出了重要一步。相關成果發表于最新一......

    首個速度達拍赫茲光電晶體管問世

    在一項具有開創性意義的國際合作研究中,美國亞利桑那大學研究團隊展示了一種利用持續時間不到萬億分之一秒的超快光脈沖來操縱石墨烯中電子的方法。通過量子隧穿效應,他們記錄到了電子幾乎瞬間繞過物理屏障的現象,......

    科研人員研發出高各向異性導熱石墨烯復合材料實現光電熱協同控冰

    中國科學院合肥物質科學研究院固體物理研究所王振洋團隊根據“3D打印結構設計-激光界面工程-跨尺度性能調控”設計思路,開發出具有高各向異性導熱比、高光熱/電熱轉換效率兼具良好疏水性和機械性能的石墨烯/聚......

    <td id="wa4yw"><option id="wa4yw"></option></td>
  • <td id="wa4yw"><kbd id="wa4yw"></kbd></td><noscript id="wa4yw"><source id="wa4yw"></source></noscript>
    <bdo id="wa4yw"><kbd id="wa4yw"></kbd></bdo><input id="wa4yw"></input>
    <table id="wa4yw"><kbd id="wa4yw"></kbd></table>
  • <td id="wa4yw"><option id="wa4yw"></option></td>
    <option id="wa4yw"></option>
  • <table id="wa4yw"></table>
  • XVideos