用于激光等離子體診斷的亞千X射線能譜儀
本文簡介了由濾片-X射線二極管陣列組成的具有亞納秒時間分辨的亞千X射線能譜儀。在0.1到1.5keV能區能量分辨約為200eV。著重介紹了譜儀的結構和應用,數據處理及誤差。并就激光-金平面靶相互作用實驗中,在激光強度約10^14w/cm^2條件下獲得的部份數據進行了簡化處理,給出了激光等離子體亞千X射線輻射能譜,由此推出等離子體輻射溫度。......閱讀全文
軟X射線能譜儀
本文描述了一個用于托卡馬克雜質譜線精細測量的高分辨軟X射線譜儀。譜儀采用Johann型彎晶衍射結構,以多絲正比室作探測器件。其測量范圍為2—8keV(1—6),能量分辨為4.1eV(在6.4keV處)。多絲正比室采用陽極絲逐絲讀出法,位置讀出精度2mm。譜儀配有自動數據記錄系統。?
X射線能譜儀簡介
能譜儀是利用X射線能譜分析法來對材料微區成分元素種類與含量分析的儀器,常常配合掃描電子顯微鏡與透射電子顯微鏡的使用。
X-射線能譜
X 射線能譜( Energy-dispersive X-ray spectroscopy, EDS)是微區成分分析最為常用的一種方法,其物理基礎是基于樣品的特征 X 射線。當樣品原子內層電子被入射電子激發或電離時,會在內層電子處產生一個空缺,原子處于能量較高的激發狀態,此時外層電子將向內層躍遷以填補
X射線能譜儀應用范圍
1、金屬材料的相分析、成分分析和夾雜物形態成分的鑒定;2、高分子、陶瓷、混凝土、生物、礦物、纖維等無機或有機固體材料分析;3、可對固體材料的表面涂層、鍍層進行分析,如:金屬化膜表面鍍層的檢測;4、金銀飾品、寶石首飾的鑒別,考古和文物鑒定,以及刑偵鑒定等領域;5、進行材料表面微區成分的定性和定量分析,
Si(Li)X射線能譜儀
Si(Li)x射線能譜儀于一九六八午首次應川在電子探針,成為一種x射線微分析的工具。此后,在能量分辨率、計數率和數據分析等方面作了許多改進,目前已經成為電子探針和掃描電鏡的一種受歡迎的附件,甚至在透射電子顯微鏡上也得到應用。
X射線能譜儀的原理介紹
在許多材料的研究與應用中,需要用到一些特殊的儀器來對各種材料從成分和結構等方面進行分析研究。 其中,X射線能譜儀(XPS)就是常用儀器之一。下面詳細介紹一下X射線能譜儀的基本原理、結構、優缺點及應用。 X射線光電子能譜(XPS)也被稱作化學分析用電子能譜(ESCA)。該方法
應用X射線能譜儀檢驗原子印油
?原子印章是一種新型的印章。原子印章攜帶和使用極為方便,已被普遍使用。由于原子印章的特殊結構,其印油的成份不同于普通的印臺油及印泥。早期的原子印油多為國外進口,目前國內亦有一些廠家生產。我們應用掃描電子顯微鏡和 X 射線能譜儀對原子印油進行檢驗,獲得一些有用的信息。
軟X射線能譜儀數據采集系統
在 線 存 儲 軟X射線能譜儀的結構框圖見圖1。不同能量的軟X射線被Johann彎晶衍射分光,分光后的能量分布轉化成在探測器上對應的位置分布。位置靈敏、時間分辨好的MWPC和MCP都可做為這種探測器。軟X射線區適用的MWPC采用逐絲陽極讀出法以允許高計數率,同時也是為了滿足將可測能區延伸到更低能區時
X射線能譜儀譜峰重疊問題的探討
針對X射線能譜儀在對樣品進行定性分析時經常出現的元素譜峰重疊問題,進行機理分析和歸納總結,提出在物證檢驗中如何避免譜峰重疊帶來定性分析偏差的方法.?
X射線機重過濾X射線能譜的測量
本文報道了用 NaI(Tl)閃爍譜儀對國產 F34-Ⅰ型 X 射線機的重過濾 X 射線能譜的測量和解譜方法,給出一組測量結果,并對測量結果進行了比較和討論。
軟X射線源上X射線能譜與X射線能量的測量
本文介紹了國內首次利用針孔透射光柵譜儀對金屬等離子體Z箍縮X射線源能譜的測量結果及數據處理方法。同時用量熱計對該源的單脈沖X射線能量進行了測量并討論了其結果。
DPF脈沖X射線能譜測量
采用濾光法對DPF脈沖X射線源裝置的X射線能譜進行了測量,取得了較好的結果,為輻射效應環境測量提供了一種手段。?
高能脈沖X射線能譜測量
給出了高能脈沖X射線能譜測量的基本原理及實驗結果.采用Monte-Carlo程序計算了高能光子在能譜儀中每個靈敏單元內的能量沉積,利用能譜儀測量了"強光Ⅰ號"加速器產生的高能脈沖X射線不同衰減程度下的強度,求解得到了具有時間分辨的高能脈沖X射線能譜,時間跨度57ns,時間步長5ns,光子的最高能量3
X射線能譜數據處理
本文提出運用FFT,對雙路實測能譜信息在變換域中加以濾波修正,同時完成平滑及背底扣除。文中剖析了EDAX-7EMZL程序,并與諸元素特征峰及背底的譜分析相比較,獲取濾波修正頻窗。文中編制了雙路能譜同時作濾波修正程序。試驗表明:此法實現了數據壓縮及零相位校正,增快了濾波速度,減小了相位滯移量,提高了分
X射線能譜測量與模擬
1895年,德國科學家倫琴發現了X射線,開辟了一個嶄新的、廣闊的物理研究領域。其中,針對電子打靶產生的韌致輻射X射線的研究,是X射線研究領域的一個重要課題。本文在國內外針對X射線能譜測量與解析的基礎上,利用高純鍺(HPGe)探測器使用直接測量法與間接測量法對鎢靶X射線與鉬靶X射線能譜進行了測量。工作
X射線能譜定性分析
X射線能譜定性分析快速有效,是電子探針和掃描電鏡分析必須的組成部分。用X射線能譜儀測量試樣特征X射線全譜中各譜峰的能量值,計算機釋譜得出試樣的元素組成。X射線能譜定性分析要注意背景的判別、峰的位移、峰的重疊、逃逸峰、二倍峰、和峰和其他干擾峰等問題,以免導致錯誤的分析結果。(1)背景的判別在使用X射線
X射線能譜儀的工作原理和應用
1 X射線能譜儀的工作原理 當電子槍發射的高能電子束進入樣品后,與樣品原子相互作用,原子內殼層電子被電離后,由較外層電子向內殼層躍遷產生具有特定能量的電磁輻射光子,即特征X射線。X射線能譜儀就是通過探測樣品產生的特征X射線能量來確定其相對應的元素,并對其進行相應的定性、定量分析。 2 掃描電
X射線能譜儀和波譜儀的優缺點
能譜儀全稱為能量分散譜儀(EDS)。 目前最常用的是Si(Li)X射線能譜儀,其關鍵部件是Si(Li)檢測器,即鋰漂移硅固態檢測器,它實際上是一個以Li為施主雜質的n-i-p型二極管。 Si(Li)能譜儀的優點 分析速度快 能譜儀可以同時接受和檢測所有不同能量的X射線光子信號,故可在幾分
美國KEVEX公司8000型x射線能譜儀
?8000型X射線能譜儀主要做能量分散X射線分析,可用于冶金、電子、地球化學勘探、化工、石油、生物醫學等許多領域。儀器由X射線探測器,分析儀,小型計算機、大容量存貯器,顯示器,鍵盤和軟件構成。?
X射線能譜儀的使用原理及應用
在許多材料的研究與應用中,需要用到一些特殊的儀器來對各種材料從成分和結構等方面進行分析研究。其中,X射線能譜儀(XPS)就是常用儀器。下面詳細介紹一下X射線能譜儀的基本原理、結構、優缺點及應用。? X射線能譜儀的簡介? X射線光電子能譜(XPS)也被稱作化學分析用電子能譜(ESCA)。該方法是在
多層鏡軟X射線能譜儀的研制
軟X射線能譜測量是ICF實驗中的重要內容,測量意義重大。軟X射線能診斷通過光譜分析,可以得到X射線總的通量,輻射溫度,轉換效率以及反照率。這些都是間接驅動黑腔熱力學的重要參數。作為黑體腔特征診斷系統,軟X射線能診斷系統測量黑體腔中發射出的X射線,可得出黑腔中輻射溫度的時間變化圖。針對目前常用的譜儀往
X射線光電子能譜儀原理
X射線光子的能量在1000~1500ev之間,不僅可使分子的價電子電離而且也可以把內層電子激發出來,內層電子的能級受分子環境的影響很小。 同一原子的內層電子結合能在不同分子中相差很小,故它是特征的。光子入射到固體表面激發出光電子,利用能量分析器對光電子進行分析的實驗技術稱為光電子能譜。?XPS的原理
X射線能譜儀和波譜儀的優缺點
能譜儀全稱為能量分散譜儀(EDS)。 ?目前最常用的是Si(Li)X射線能譜儀,其關鍵部件是Si(Li)檢測器,即鋰漂移硅固態檢測器,它實際上是一個以Li為施主雜質的n-i-p型二極管。Si(Li)能譜儀的優點 ?分析速度快 能譜儀可以同時接受和檢測所有不同能量的X射線光子信號,故可在幾分鐘內分析和
掃描電鏡/X射線能譜儀/X射線波譜儀組合檢測射擊殘留物
在司法物證檢驗中,通常采用掃描電鏡/X射線能譜儀自動檢測槍擊案件中的射擊殘留物。但在檢出的可疑顆粒物中,經常遇到硫(S)、銻(Sb)元素含量偏低的情況,用X射線能譜儀很難認定該顆粒物就是射擊殘留物。本文采用了掃描電鏡/X射線能譜儀/X射線波譜儀組合方法,能檢測出射擊殘留物中的S和Sb元素,彌補了X射
用透射光柵譜儀測量金箔背側X射線能譜
在星光激光裝置上利用波長為 0 3 5 μm的激光輻照金箔靶 ,在金箔靶背側用透射光柵配X射線chargecoupleddevice系統測量了其發射的軟X射線能譜 ,并與用亞千能譜儀測量的結果進行了比較 ,獲得了比較一致的結果 .測量結果表明 ,0 17μm厚度的金箔靶背側的X射線能譜偏離平衡輻射譜
NaI晶體譜儀采集X射線能譜測量方法研究
為準確測量軔致輻射X射線能譜,利用NaI晶體譜儀對于測量光子的能譜展寬效應,結合理論模擬分析,提出了采用變能量矩陣求解法實現X射線能譜的重建。該方法通過合理選擇能量區間,可有效消除能譜響應矩陣中各矢量的相關性,從而實現能譜的準確重建。并分別以均勻能譜分布和實際軔致輻射X射線能譜為例,進行了X射線的能
用改進的透射光柵譜儀定量測量X射線能譜
利用最新研制的小型化透射光柵譜儀在"神光Ⅲ"原型實驗裝置上測量了激光注入金腔靶時激光注入口的X射線能譜,首次實現了在上極點附近對柱腔注入口輻射的測量,且實現對X射線的二維空間分辨和譜分辨的測量。改進后的透射光柵譜儀成像系統首次使用一種錯位排布的狹縫陣列結構來解決因譜儀尺寸減小帶來的能譜分辨問題,并同
X射線能譜定量分析
隨著探頭制造技術水平的提高、電子學技術的發展,以及對脈沖處理技術和重疊峰處理方法的改進,能譜定量分析的精度得到不斷提高。目前,對原子序數在11~30之間的常用元素,其分析精度大體上可以達到波長譜儀的水平。由于能譜定量分析的方法簡單、操作方便,它既能進行大試樣的平均成份分析,也能進行微粒、薄板、鍍層、
X射線能譜重疊峰的識別
提出了一種通過譜線權重來正確識別X射線能譜重疊峰的新方法。應用該方法 ,成功地分析了Ti合金微區中能量差為 2 0eV的Ti和V的重疊峰。實驗表明 ,該方法簡便、可靠 ,并可適用于K Zn之間元素的分析?
X射線光電子能譜
X射線光電子能譜(X-ray photoelectron spectroscopy,XPS)技術也被稱作用于化學分析的電子能譜(electron spectroscopy for chemical analysis,ESCA).XPS屬表面分析法,它可以給出固體樣品表面所含的元素種類、化學組成以及有