鐵磁金屬/拓撲絕緣體異質結中自旋流電荷流轉換效率
自旋流的產生、操作和探測是自旋電子學研究的最基本問題,其中一個關鍵目標是在室溫以上實現電荷流-自旋流的高效轉換。電荷流-自旋流轉換效率與材料中的自旋-軌道耦合密切相關,通過逆自旋霍爾效應(Inverse Spin Hall effect)和逆埃德爾施泰因效應(Inverse Edelstein effect)可實現自旋流-電荷流的高效轉換。 由于拓撲絕緣體中存在強自旋-軌道耦合,從而導致“自旋-動量鎖定”狄拉克表面態的形成。當三維自旋流從相鄰鐵磁層注入到具有自旋手性結構的狄拉克表面時,通過逆埃德爾施泰因效應產生二維電荷流。自旋流-電荷流的轉換效率等于狄拉克費米子的費米速度和自旋-動量散射時間的乘積,即\(\lambda_{\mathrm{IEEE}}(T I)=j_{c}^{2 D} / j_{S}^{3 D}=v_{F} \tau_{S}\)。除拓撲表面態外,二維電子氣(2DEG)的Rashba效應也可以導致自旋劈裂,從......閱讀全文
鐵磁金屬/拓撲絕緣體異質結中自旋流電荷流轉換效率
自旋流的產生、操作和探測是自旋電子學研究的最基本問題,其中一個關鍵目標是在室溫以上實現電荷流-自旋流的高效轉換。電荷流-自旋流轉換效率與材料中的自旋-軌道耦合密切相關,通過逆自旋霍爾效應(Inverse Spin Hall effect)和逆埃德爾施泰因效應(Inverse Edelstein
物理所預言一種新類型的拓撲絕緣體和量子自旋霍爾效應
日前,中國科學院物理研究所/北京凝聚態物理國家實驗室(籌)孫慶豐和謝心澄研究員在鐵磁石墨烯體系中預言了一種新類型的拓撲絕緣體和量子自旋霍爾效應【PRL,104,066805(2010)】。 近幾年來,一種全新的量子物質態――拓撲絕緣體已蓬勃興起。與傳統的絕緣體比較,拓撲絕緣體有
陳絕緣體內或存在拓撲激子
激子(e)及其空穴(h)相互環繞(藝術圖)。圖片來源:俄克拉荷馬大學科技日報北京8月28日電(記者劉霞)美國俄克拉荷馬大學凝聚態物理學家發表論文稱,陳絕緣體內或許存在一種新型激子——拓撲激子,這些激子有望催生新型量子器件。相關論文發表于最新一期《美國國家科學院院刊》。當電子吸收光并躍遷到更高能級或能
陳絕緣體內或存在拓撲激子
美國俄克拉荷馬大學凝聚態物理學家發表論文稱,陳絕緣體內或許存在一種新型激子——拓撲激子,這些激子有望催生新型量子器件。相關論文發表于最新一期《美國國家科學院院刊》。 當電子吸收光并躍遷到更高能級或能帶時,受激電子會在其先前的能帶中留下一個“電子空穴”。由于電子帶負電荷而空穴帶正電荷,兩者會通過
新發現:拓撲晶體的絕緣體態
拓撲晶體絕緣體(TCI)是一類受晶體對稱性保護的非平庸拓撲態。在保持時間反演對稱性的體系中,理論上已預言了三種類型的TCI,分別受到鏡面、滑移面和旋轉對稱性保護。角分辨光電子能譜(ARPES)實驗已證實了鏡面對稱性保護TCI材料SnTe,并在KHgSb中觀測到滑移面保護TCI態的部分實驗證據。2
物理所發現基于新型磁子結YIG/NiO/YIG的磁子閥效應
磁子型器件有望構成繼基于電荷流的第一大類半導體/微電子器件和基于自旋極化電流的第二大類自旋極化電子器件之后的基于磁子流的第三大類固態磁子型器件,有望為未來信息科學和技術的可持續發展帶來更加廣闊的發展空間。 從物理角度上講,除了電子這一自旋的載體,其它中子、磁子等粒子或者準粒子也可以攜帶自旋角動
Nature子刊:自旋極化STM等對量子材料中自旋流的原位探測
近日,北京大學量子材料科學中心韓偉研究員、謝心澄院士和日本理化學研究所Sadamichi Maekawa教授受邀在國際著名刊物 Nature Materials (《自然-材料》)撰寫綜述文章,介紹“自旋流-新穎量子材料的靈敏探針”這一新興領域的前沿進展。 自旋電子學起源于巨磁阻效應的發現,在
拓撲絕緣體內奇異量子效應室溫下首現
科技日報北京10月27日電 (記者劉霞)據《自然·材料》雜志10月封面文章,美國科學家在研究一種鉍基拓撲材料時,首次在室溫下觀察到了拓撲絕緣體內的獨特量子效應,有望為下一代量子技術,如能效更高的自旋電子技術的發展奠定基礎,也將加速更高效且更“綠色”量子材料的研發。 拓撲絕緣體是一種特殊的材料,內
首次在磁性拓撲絕緣體中觀測到清晰的拓撲表面態
近十幾年來,拓撲絕緣體已經成為凝聚態物理領域的一個重要研究方向。對于Z2拓撲絕緣體,其拓撲性質受到時間反演對稱性的保護。如果將Z2拓撲絕緣體的時間反演對稱性破壞,會形成一類新的拓撲態,即磁性拓撲絕緣體。磁性拓撲絕緣體可以表現出一系列新奇的物理性質,例如量子反常霍爾效應、手性馬約拉納費米子、軸子絕
拓撲絕緣體量子輸運性質研究取得進展
電子-電子相互作用、量子干涉和無序對輸運性質的影響是凝聚態物理研究的重要主題。量子干涉的一階效應包括被廣泛研究的弱局域化和反弱局域化效應,分別對應于正交對稱性和辛對稱性的體系。2004年研究人員發現,對于前者,比如無序足夠強的弱自旋軌道耦合半導體,電子-電子相互作用和量子干涉效應產生的二階量子修正可
拓撲絕緣體量子輸運性質研究取得進展
電子-電子相互作用、量子干涉和無序對輸運性質的影響是凝聚態物理研究的重要主題。量子干涉的一階效應包括被廣泛研究的弱局域化和反弱局域化效應,分別對應于正交對稱性和辛對稱性的體系。2004年研究人員發現,對于前者,比如無序足夠強的弱自旋軌道耦合半導體,電子-電子相互作用和量子干涉效應產生的二階量子修
二維拓撲絕緣體研究獲進展
理論研究表明,具有蜂窩狀晶格結構的薄膜是二維拓撲絕緣體的重要平臺,也是實現量子自旋霍爾效應的理想材料。該體系獨特的晶格結構使其在布里淵區的K點處產生狄拉克錐型能帶結構,如石墨烯。由于碳元素的自旋軌道耦合強度低,石墨烯難以在狄拉克點處打開能隙,從而實現量子自旋霍爾效應。相比之下,碲元素因強自旋軌道
科學家實現新型聲學拓撲絕緣體
近日,中國科學院聲學研究所噪聲與振動重點實驗室副研究員賈晗與華中科技大學物理學院副教授祝雪豐等合作的研究“反常弗洛奎型聲學拓撲絕緣體的實驗論證”在《自然—通訊》上在線發表。 拓撲絕緣體是一類不同于金屬和絕緣體的全新物態,其內部為絕緣體但表面卻能導電,且該表面導電性源自材料的內稟性質,不受雜質和
拓撲絕緣體的實驗研究獲系列進展
中國科學院物理研究所/北京凝聚態物理國家實驗室(籌)表面物理國家重點實驗室馬旭村研究員領導的研究組與清華大學物理系薛其坤教授領導的研究組合作,在三維拓撲絕緣體薄膜的外延生長、電子結構及有限尺寸效應方面進行研究,取得一系列進展。 ? 拓撲絕緣體是最近幾年發現的一種新的物質形態。
首個光學拓撲絕緣體研制成功
據物理學家組織網近日報道,以色列和德國科學家攜手合作,成功研制出首個光學拓撲絕緣體,這種新設備通過一種獨特的“波導”網格,為光的傳輸護航,可減少傳輸過程中的散射。科學家們表示,最新研究對光學工業的發展大有裨益。研究發表在最新一期的《自然》雜志上。 隨著計算機的運行速度不斷加快以及芯片變得越
科學家首次觀測到超冷原子氣體中的對流超流相
中國科學技術大學潘建偉、苑震生、鄧友金等與合作者,在超冷原子量子模擬實驗中首次觀測到對流超流相這一新奇量子物態,證實了對流的雙組分超流體共同形成絕緣體的特性。近期,相關研究成果發表在《自然-物理學》(Nature Physics)上。20世紀30年代,卡皮查、艾倫和邁斯納等在液氦中發現超流現象,推動
科學家首次觀測到超冷原子氣體中的對流超流相
中國科學技術大學潘建偉、苑震生、鄧友金等與合作者,在超冷原子量子模擬實驗中首次觀測到對流超流相這一新奇量子物態,證實了對流的雙組分超流體共同形成絕緣體的特性。近期,相關研究成果發表在《自然-物理學》(Nature Physics)上。20世紀30年代,卡皮查、艾倫和邁斯納等在液氦中發現超流現象,推動
自然界中存在天然形成的拓撲絕緣體
據《自然》網站3月8日報道,最近,德國馬克斯·普朗克研究院固體研究所科學家發現,自然界中也存在天然形成的拓撲絕緣體,而且比人工合成的更純凈。這一發現對建造自旋電子設備具有促進作用,并有助于設計開發用電子自旋來編碼信息的量子計算機。研究結果發表在最近出版的《納米快報》上。 拓撲絕緣體是一種奇
光子拓撲自旋態研究新成果拓展光的拓撲學研究范疇
拓撲缺陷在物理學上通常指場分布無法連續形變、物理量無法定義的特殊點,也稱為奇點,在渦旋或拓撲結構中普遍存在。拓撲缺陷在宇宙學、流體動力學、空氣動力學、聲學以及生物學等領域也十分常見,并在某些應用中起著重要作用。 近年來,探索拓撲結構的電磁類比在光學和光子學中引起了極大興趣。在集成光子學領域,微
鐵磁絕緣體中磁子輸運性質的全電學方法研究獲進展
磁性存儲和磁邏輯等自旋電子學器件的核心在于自旋信息的傳遞,特別是自旋信息的產生、操控和探測是自旋電子學領域的一個基本問題。現有的自旋電子學中自旋信息主要依賴金屬中的傳導電子,一個非常有趣的問題是,是否有其他粒子甚至是準粒子可以作為自旋信息的載體?作為鐵磁體中低能激發態的準粒子——磁子,是一種玻色
半導體所等在拓撲絕緣體研究中獲進展
拓撲絕緣體是目前凝聚態物理的前沿熱點問題之一。它具有獨特的電子結構,它在體內能帶存在能隙,表現出絕緣體的行為;表面或邊界的能帶是線性的無能隙的Dirac錐能譜,因而是金屬態。這種量子物態展現出豐富而新奇的物性,如量子自旋霍爾效應、磁電耦合、量子反常霍爾效應等。由于這種新奇的物性源
物理所在大能隙二維拓撲絕緣體ZrTe5中觀測到拓撲邊界態
眾所周知,二維拓撲絕緣體的體內是絕緣的,而其邊界是無能隙的金屬導電態。且這種金屬態中存在自旋-動量的鎖定關系,相反自旋的電子向相反的方向運動,由于受到時間反演不變性的保護,它們之間的散射是禁止的,因此是自旋輸運的理想“雙向車道”高速公路,可用于新型低能耗高性能自旋電子器件。當前實驗已經確定具有量
科學家實現聲二階拓撲絕緣體
日前,南京大學教授盧明輝、陳延峰團隊與蘇州大學教授蔣建華團隊合作,在聲子晶體中發現二階拓撲相和多維拓撲相變,相關研究成果近日在線發表于《自然-物理》。 研究人員在空氣聲系統中首次觀測到不同空間維度的拓撲相變,并利用多維度的拓撲相和拓撲相變實現了二階拓撲絕緣體,揭示了高階拓撲相形成的新機制。
單元素二維拓撲絕緣體鍺烯面世
原文地址:http://news.sciencenet.cn/htmlnews/2023/5/500858.shtm荷蘭科學家研制出了首個由單元素組成的二維(2D)拓撲絕緣體鍺烯,其僅由鍺原子組成,還具有在“開”和“關”狀態之間切換的獨特能力,這一點類似晶體管,有望催生更節能的電子產品。相關研究刊發
拓撲絕緣體中電流的高效轉換機制被發現
意大利國家研究委員會微電子與微系統研究所(CNR-IMM)開展了一項研究,發現在硅襯底上拓撲生長的絕緣體——碲化銻(Sb2Te3)中,純自旋電流和“傳統”電流之間的轉換效率很高。相關成果發表在《Advanced Functional Materials》《Advanced Materials I
物理所合作發現二維電子液體的自旋流電流轉換效應
自旋電子學可能導致面向未來的新一代信息技術。自旋流的產生、調控以及自旋流-電流的轉換是自旋電子學研究的核心問題。具有Rashba 形式自旋-軌道耦合的二維電子體系為自旋流的高效調控提供了新機遇。對于二維電子體系,V. M. Edelstein 預言存在一種新物理效應,即Edelstein效應:與
物理所預言硅烯中的量子自旋霍爾效應
最近,中科院物理研究所/北京凝聚態物理國家實驗室(籌)姚裕貴研究員以及博士生劉鋮鋮、馮萬祥采用第一性原理,系統地研究了硅烯的晶體結構、穩定性、能帶拓撲和自旋軌道耦合打開的能隙,預言了在硅烯中可以實現量子自旋霍爾效應。 ? 近幾年來,拓撲絕緣體的研究在世界范圍內飛速發展,并成為凝聚態物理研
拓撲晶態絕緣體碲化錫納米線研究獲得新進展
拓撲絕緣體(Topological Insulator)是一種新奇的物質狀態,它的體相是絕緣態而表面卻是零帶隙的金屬態。尤其它的表面是受拓撲保護的導電態,不受非磁性雜質和晶體缺陷的干擾,因而在無損耗的量子計算和新奇的自旋電子器件等領域具有重要的應用價值。時間反演對稱性保護的三維拓撲絕緣體如B
物理所預言新型二維大能隙拓撲絕緣體
眾所周知,二維拓撲絕緣體的體內是絕緣的,而其邊界是無能隙的金屬導電態。且這種金屬態中存在自旋-動量的鎖定關系,相反自旋的電子向相反的方向運動,由于受到時間反演不變性的保護,它們之間的散射是禁止的,因此是自旋輸運的理想“雙向車道”高速公路,可用于新型低能耗高性能自旋電子器件。當前實驗證實的二維拓撲
中國科大等在二維材料拓撲態研究領域取得系列進展
中國科學技術大學教授喬振華課題組與國內外同行合作,在二維體系拓撲量子態的理論研究方面取得系列進展。相關成果發表在《自然-納米技術》、《物理評論快報》和《物理學進展報告》上。 量子反常霍爾效應(即零磁場條件下量子霍爾效應)自石墨烯和拓撲絕緣體發現以來受到了凝聚態物理和材料科學領域的廣泛關注,并且