淋巴細胞信號轉導研究中常用方法
信號轉導是目前分子免疫學中研究的熱點。免疫學中所涉及的信號轉導主要包括淋巴細胞的信號轉導以及細胞因子/細胞因子受體的信號轉導,其研究手段多種多樣,包括細胞生物學、分子生物學以及蛋白質化學等技術。本節將扼要介紹目前信號轉導研究中常用的方法和技術。 一、磷酸化的信號轉導分子的鑒定 在淋巴細胞信號轉地過程中可發生多種蛋白底物的磷酸化,包括酪氨酸磷酸化、蘇氨酸殘基磷酸化及絲氨酸殘基磷酸化。它們分別由不同的蛋白激酶所催化。這些磷酸化蛋白通常都為信號轉導分子,在信號傳遞過程中發揮重要的作用。一些信號蛋白結構中含SH-2結構域可同某些磷酸化的酪氨酸殘基相結合,使信號得以逐級傳遞。含酪氨酸磷酸化的蛋白鑒定通常是首先分離粗提蛋白,采用針對含這些氨基酸殘基磷酸化蛋白的單克隆抗體進行免疫沉淀 (immunoprecipitation),SDS-PAGE電泳,然而采用Western blotting及immunoblotting鑒......閱讀全文
淋巴細胞信號轉導研究中常用方法
? 信號轉導是目前分子免疫學中研究的熱點。免疫學中所涉及的信號轉導主要包括淋巴細胞的信號轉導以及細胞因子/細胞因子受體的信號轉導,其研究手段多種多樣,包括細胞生物學、分子生物學以及蛋白質化學等技術。本節將扼要介紹目前信號轉導研究中常用的方法和技術。 一、磷酸化的信號轉導分子的鑒定 在淋巴細胞信號
淋巴細胞活化過程中信號轉導的分子基礎
? 淋巴細胞是免疫系統中重要的免疫活性細胞,其活化過程的信號轉導(signal transduction)及其分子基礎極為復雜,是目前分子免疫學及免疫生物學中研究的熱點。目前對T淋巴細胞活化過程中信號轉導及其分子基礎的研究較深入,而對B細胞的研究資料還較缺乏。本章著重介紹T淋巴細胞活化過程中
經B淋巴細胞抗原受體介導的信號轉導分子基礎
? B淋巴細胞是另一群重要的免疫活性細胞,它有兩個基本的功能:一方面作為免疫效應細胞直接參與免疫應答,介導體液免疫;另一方面作為特異性的抗原提呈細胞選擇性地捕獲抗原并提呈給T細胞,協同和調節T細胞免疫應答。B細胞以上的兩個基本功能是通過其表面的抗原受體所介導。B細胞抗原受體的信號介導由許多分子參與,
信號轉導通常步驟
信號轉導通常包括以下步驟:特定的細胞釋放信息物質→信息物質經擴散或血循環到達靶細胞→與靶細胞的受體特異性結合→受體對信號進行轉換并啟動細胞內信使系統→靶細胞產生生物學效應【1】。通過這一系列的過程,生物體對外界刺激作出反應。
核受體信號轉導途徑
細胞內受體分布于胞漿或核內,本質上都是配體調控的轉錄因子,均在核內啟動信號轉導并影響基因轉錄,統稱核受體。核受體按其結構和功能分為類固醇激素受體家族和甲狀腺素受體家族。類固醇激素受體(雌激素受體除外)位于胞漿,與熱休克蛋白(HSP)結合存在,處于非活化狀態。配體與受體的結合使HSP與受體解離,暴露D
Notch信號轉導調節方式
Notch信號轉導有三種調節方式:1.胞外水平,一種是通過與Notch的胞外段相互作用,從而影響正常的Notch受體與配體的結合,進而影響信號的傳導,如:Fringe、Wingless,Scabrous等。另一種是通過在金屬蛋白酶的作用下產生受體和配體的活性片段,影響正常Notch受體和配體的結合,
信號轉導途徑的定義
在生物體中,細胞之間是相互聯系的,相互作用的。機體產生的各種各樣的信號分子,例如激素和細胞因子,在細胞膜上結合之后,就會與細胞膜上的受體結合,激活細胞內的一系列生化反應,使細胞能夠產生一定的反應。從細胞膜到細胞內的這樣的反應途徑,就是信號傳導途徑。
信號轉導途徑的定義
在生物體中,細胞之間是相互聯系的,相互作用的。機體產生的各種各樣的信號分子,例如激素和細胞因子,在細胞膜上結合之后,就會與細胞膜上的受體結合,激活細胞內的一系列生化反應,使細胞能夠產生一定的反應。從細胞膜到細胞內的這樣的反應途徑,就是信號傳導途徑。
核受體信號轉導途徑
細胞內受體分布于胞漿或核內,本質上都是配體調控的轉錄因子,均在核內啟動信號轉導并影響基因轉錄,統稱核受體。核受體按其結構和功能分為類固醇激素受體家族和甲狀腺素受體家族。類固醇激素受體(雌激素受體除外)位于胞漿,與熱休克蛋白(HSP)結合存在,處于非活化狀態。配體與受體的結合使HSP與受體解離,暴露D
信號轉導途徑的定義
在生物體中,細胞之間是相互聯系的,相互作用的。機體產生的各種各樣的信號分子,例如激素和細胞因子,在細胞膜上結合之后,就會與細胞膜上的受體結合,激活細胞內的一系列生化反應,使細胞能夠產生一定的反應。從細胞膜到細胞內的這樣的反應途徑,就是信號傳導途徑。
穿膜信號轉導的概念
中文名稱穿膜信號轉導英文名稱transmembrane signal transduction定 義通過信號分子與其在細胞的各種膜上面的專一性受體結合,引起信號轉導級聯反應,產生生理響應,使細胞的生長、增殖、發育、分化與死亡得以協調進行的過程。應用學科生物化學與分子生物學(一級學科),信號轉導(二
分叉信號轉導途徑的定義
中文名稱分叉信號轉導途徑英文名稱bifurcating signal transduction pathway定 義上游信號分子受到刺激后引發出不同的下游信號通路,產生不同的生理效應。如磷脂酶C被激活后產生兩種第二信使:肌醇三磷酸和二酰甘油。前者導致鈣離子釋放;后者激活蛋白激酶C而引發相關效應。應
膜受體介導的信號轉導
? 與脂溶性的化學信號不同,親水性信號分子(所有的肽類激素、神經遞質和各種細胞因子等)均不能進入細胞。它們的受體位于細胞表面。這些受體與信號分子結合后,可以誘導細胞內發生一系列生物化學變化,從而使細胞的功能如生長、分化及細胞內化學物質的分布等發生改變,以適應微環境的變化和機體整體需要。這一過程可以稱
穿膜信號轉導的概念
中文名稱穿膜信號轉導英文名稱transmembrane signal transduction定 義通過信號分子與其在細胞的各種膜上面的專一性受體結合,引起信號轉導級聯反應,產生生理響應,使細胞的生長、增殖、發育、分化與死亡得以協調進行的過程。應用學科生物化學與分子生物學(一級學科),信號轉導(二
細胞信號轉導的特點
細胞信號轉導是指細胞通過胞膜或胞內受體感受信息分子的刺激,經細胞內信號轉導系統轉換,從而影響細胞生物學功能的過程。水溶性信息分子及前列腺素類(脂溶性)必須首先與胞膜受體結合,啟動細胞內信號轉導的級聯反應,將細胞外的信號跨膜轉導至胞內;脂溶性信息分子可進入胞內,與胞漿或核內受體結合,通過改變靶基因的轉
跨膜信號轉導的方式
跨膜信號轉導的方式主要有:1.通過具有特殊感受結構的通道蛋白完成的跨膜信號轉導。這些通道蛋白可以分為電壓門控通道、化學門控通道、機械門控同道三類,另外還有細胞間通道。2.由膜的特異性受體蛋白質、G-蛋白和膜的效應器酶組成的跨膜信號轉導系統。3.由酪氨酸激酶受體完成的跨膜信號轉導。
Ras2MAPK信號轉導途徑
Ras2MAPK信號轉導途徑Ras上游通路Ras能被復雜的網絡激活.首先,被磷酸化激活的受體如PDGFR,EGFR直接結合生長因子受體結合蛋白(Grb2),這些受體也可以間接結合并磷酸化含有src同源區2(SH2)結構域的蛋白質(例如Shc,Syp)后,再激活Grb2.第二,Grb2的src同源區3
關于核受體信號轉導途徑介紹
細胞內受體分布于胞漿或核內,本質上都是配體調控的轉錄因子,均在核內啟動信號轉導并影響基因轉錄,統稱核受體。核受體按其結構和功能分為類固醇激素受體家族和甲狀腺素受體家族。類固醇激素受體(雌激素受體除外)位于胞漿,與熱休克蛋白(HSP)結合存在,處于非活化狀態。配體與受體的結合使HSP與受體解離,暴
P38MAPK信號轉導通路
P38MAPK 信號轉導通路分裂原激活的蛋白?激酶(mitogen activated protein kinases,MAPK)家族是非常保守的絲氨酸/蘇氨酸蛋白激酶,是信號轉導過程中一組主要的信號分子,在發育和疾病發生過程中起重要作用。該家族有4個成員,即細胞外信號調節激酶(extracellu
G蛋白介導的信號轉導途徑
G蛋白可與鳥嘌呤核苷酸可逆性結合。由γ亞基組成的異三聚體在膜受體與效應器之間起中介作用。小G蛋白只具有G蛋白?亞基的功能,參與細胞內信號轉導。信息分子與受體結合后,激活不同G蛋白,有以下幾種途經:(1)腺苷酸環化酶途徑 通過激活G蛋白不同亞型,增加或抑制腺苷酸環化酶(AC)活性,調節細胞內cAMP濃
G蛋白介導的信號轉導途徑
G蛋白可與鳥嘌呤核苷酸可逆性結合。由γ亞基組成的異三聚體在膜受體與效應器之間起中介作用。小G蛋白只具有G蛋白?亞基的功能,參與細胞內信號轉導。信息分子與受體結合后,激活不同G蛋白,有以下幾種途經:(1)腺苷酸環化酶途徑 通過激活G蛋白不同亞型,增加或抑制腺苷酸環化酶(AC)活性,調節細胞內cAMP濃
細胞-分叉信號轉導途徑的定義
中文名稱分叉信號轉導途徑英文名稱bifurcating signal transduction pathway定 義上游信號分子受到刺激后引發出不同的下游信號通路,產生不同的生理效應。如磷脂酶C被激活后產生兩種第二信使:肌醇三磷酸和二酰甘油。前者導致鈣離子釋放;后者激活蛋白激酶C而引發相關效應。應
關于細胞信號轉導的介紹
細胞信號轉導是指細胞通過胞膜或胞內受體感受信息分子的刺激,經細胞內信號轉導系統轉換,從而影響細胞生物學功能的過程。水溶性信息分子及前列腺素類(脂溶性)必須首先與胞膜受體結合,啟動細胞內信號轉導的級聯反應,將細胞外的信號跨膜轉導至胞內;脂溶性信息分子可進入胞內,與胞漿或核內受體結合,通過改變靶基因
細胞內受體的信號轉導機理
? 脂溶性化學信號(如類固醇激素、甲狀腺素、前列腺素、維生素A及其衍生物和維生素D及其衍生物等)的受體位于細胞漿或細胞核內。激素進入細胞后,有些可與其胞核內的受體相結合形成激素-受體復合物,有些則先與其在胞漿內的受體結合,然后以激素-受體復合物的形式進入核內。 這些受體均屬于轉錄因子,并具有鋅指結
信號轉導技術方向的著名企業
信號轉導 Calbiochem/oncogene: 提供高質量的生物化學及免疫化學產品,其生產的糖生物學、凋亡及信號傳導產品在相關領域處主導地位。合并后的Calbiochem & Oncogene是世界上最大的凋亡及信號傳導產品供應商。?Cell Signaling Technology: 由NEB
簡述細胞信號轉導的幾條通路
受體介導細胞信號通路包括: a.CAMP信號通路:由CM上的五種組分組成——激活型激素受體,Rs;與GDP結合的活化型調蛋白,Gs;腺苷酸環化酶,c;與GDP結合的抑制型調節蛋白,Gi;抑制型激素受體,Ri。激素配體+Rs→Rs構象改變暴露出與Gs結合位點→與Gs結合→Gs2變化排斥GDP結合GTP
PNAS:水稻油菜素內酯信號轉導調控
在水稻中發現新的油菜素 《美國國家科學院院刊》(PNAS)日前發表中科院植物所關于水稻油菜素內酯信號轉導調控的最新研究成果。該研究發現水稻油菜素內酯信號轉導途徑新的調節因子14-3-3蛋白,并揭示了一種新的OsBZR1蛋白活性調控機制,為油菜素內酯在水稻中的應用,提高水稻產量和增加植物抗逆性提示了
G蛋白耦聯受體的信號轉導機制
G蛋白通過與受體的耦聯,在信息轉導過程中常發揮著分子開關的作用。其跨膜信號轉導一般分為以下幾步:(1)當外部沒有信號或沒有受外部刺激時,受體不與配體結合,G蛋白處于關閉(失活)狀態,以異源三聚體形式存在,即α亞基與GDP緊密結合,βγ亞基與α亞基、GDP的結合較為疏松;(2)當外部有信號時,G蛋白受
受體酪氨酸激酶的信號轉導
通過多種方式,細胞外配體結合通常會引起或穩定受體二聚化。這使得每個受體單體的細胞質部分中的酪氨酸被其伴侶受體反式磷酸化,從而通過質膜傳播信號。 活化受體內特定酪氨酸殘基的磷酸化為含有SH2結構域和磷酸酪氨酸結合(PTB)結構域的蛋白提供了結合位點。 含有這些結構域的蛋白質包括Src和磷脂酶Cγ。
簡述細胞信號轉導的幾條通路
受體介導細胞信號通路包括: a.CAMP信號通路:由CM上的五種組分組成——激活型激素受體,Rs;與GDP結合的活化型調蛋白,Gs;腺苷酸環化酶,c;與GDP結合的抑制型調節蛋白,Gi;抑制型激素受體,Ri。激素配體+Rs→Rs構象改變暴露出與Gs結合位點→與Gs結合→Gs2變化排斥GDP結合GTP