<td id="wa4yw"><option id="wa4yw"></option></td>
  • <td id="wa4yw"><kbd id="wa4yw"></kbd></td><noscript id="wa4yw"><source id="wa4yw"></source></noscript>
    <bdo id="wa4yw"><kbd id="wa4yw"></kbd></bdo><input id="wa4yw"></input>
    <table id="wa4yw"><kbd id="wa4yw"></kbd></table>
  • <td id="wa4yw"><option id="wa4yw"></option></td>
    <option id="wa4yw"></option>
  • <table id="wa4yw"></table>

  • 紫外可見吸收光譜的形成原理

    原理:在有機化合物分子中有形成單鍵的σ電子、有形成雙鍵的π電子、有未成鍵的孤對n電子。當分子吸收一定能量的輻射能時,這些電子就會躍遷到較高的能級,此時電子所占的軌道稱為反鍵軌道,而這種電子躍遷同內部的結構有密切的關系。在紫外吸收光譜中,電子的躍遷有σ→σ*、n→σ*、π→π*和n→π*四種類型,各種躍遷類型所需要的能量依下列次序減小: σ→σ*>n→σ*>π→π*>n→π*由于一般紫外可見分光光度計只能提供190~850nm范圍的單色光,因此,我們只能測量n→σ*的躍遷,n→π*躍遷和部分π→π*躍遷的吸收,而對只能產生200nm以下吸收的σ→σ*的躍遷則無法測量。......閱讀全文

    紫外可見吸收光譜的形成原理

    原理:在有機化合物分子中有形成單鍵的σ電子、有形成雙鍵的π電子、有未成鍵的孤對n電子。當分子吸收一定能量的輻射能時,這些電子就會躍遷到較高的能級,此時電子所占的軌道稱為反鍵軌道,而這種電子躍遷同內部的結構有密切的關系。在紫外吸收光譜中,電子的躍遷有σ→σ*、n→σ*、π→π*和n→π*四種類型,各種

    紫外可見吸收光譜的形成原理

    原理:在有機化合物分子中有形成單鍵的σ電子、有形成雙鍵的π電子、有未成鍵的孤對n電子。當分子吸收一定能量的輻射能時,這些電子就會躍遷到較高的能級,此時電子所占的軌道稱為反鍵軌道,而這種電子躍遷同內部的結構有密切的關系。在紫外吸收光譜中,電子的躍遷有σ→σ*、n→σ*、π→π*和n→π*四種類型,各種

    紫外可見吸收光譜的形成原理

    原理:在有機化合物分子中有形成單鍵的σ電子、有形成雙鍵的π電子、有未成鍵的孤對n電子。當分子吸收一定能量的輻射能時,這些電子就會躍遷到較高的能級,此時電子所占的軌道稱為反鍵軌道,而這種電子躍遷同內部的結構有密切的關系。在紫外吸收光譜中,電子的躍遷有σ→σ*、n→σ*、π→π*和n→π*四種類型,各種

    紫外可見吸收光譜的形成原理

    原理:在有機化合物分子中有形成單鍵的σ電子、有形成雙鍵的π電子、有未成鍵的孤對n電子。當分子吸收一定能量的輻射能時,這些電子就會躍遷到較高的能級,此時電子所占的軌道稱為反鍵軌道,而這種電子躍遷同內部的結構有密切的關系。在紫外吸收光譜中,電子的躍遷有σ→σ*、n→σ*、π→π*和n→π*四種類型,各種

    紫外可見吸收光譜原理

    紫外可見吸收光譜原理:在有機化合物分子中有形成單鍵的σ電子、有形成雙鍵的π電子、有未成鍵的孤對n電子。當分子吸收一定能量的輻射能時,這些電子就會躍遷到較高的能級,此時電子所占的軌道稱為反鍵軌道,而這種電子躍遷同內部的結構有密切的關系。在紫外吸收光譜中,電子的躍遷有σ→σ*、n→σ*、π→π*和n→π

    紫外可見吸收光譜原理

    紫外可見吸收光譜原理:在有機化合物分子中有形成單鍵的σ電子、有形成雙鍵的π電子、有未成鍵的孤對n電子。當分子吸收一定能量的輻射能時,這些電子就會躍遷到較高的能級,此時電子所占的軌道稱為反鍵軌道,而這種電子躍遷同內部的結構有密切的關系。在紫外吸收光譜中,電子的躍遷有σ→σ*、n→σ*、π→π*和n→π

    紫外可見吸收光譜原理

    1. 紫外可見吸收光譜產生的原理紫外可見吸收光譜是由于分子(或離子)吸收紫外或者可見光(通常200-800 nm)后發生價電子的躍遷所引起的。由于電子間能級躍遷的同時總是伴隨著振動和轉動能級間的躍遷,因此紫外可見光譜呈現寬譜帶。紫外可見吸收光譜的橫坐標為波長(nm),縱坐標為吸光度。紫外可見吸收光譜

    紫外可見吸收光譜產品原理及應用

    紫外可見吸收光譜產品原理 分子的紫外可見吸收光譜是由于分子中的某些基團吸收了紫外可見輻射光后,發生了電子能級躍遷而產生的吸收光譜。由于各種物質具有各自不同的分子、原子和不同的分子空間結構,其吸收光能量的情況也就不會相同,因此,每種物質就有其特有的、固定的吸收光譜曲線,可根據吸收

    紫外可見吸收光譜產品原理及應用

    紫外可見吸收光譜產品原理分子的紫外可見吸收光譜是由于分子中的某些基團吸收了紫外可見輻射光后,發生了電子能級躍遷而產生的吸收光譜。由于各種物質具有各自不同的分子、原子和不同的分子空間結構,其吸收光能量的情況也就不會相同,因此,每種物質就有其特有的、固定的吸收光譜曲線,可根據吸收光譜上的某些特征波長處的

    紫外可見吸收光譜基本原理

    1. 紫外可見吸收光譜產生的原理紫外可見吸收光譜是由于分子(或離子)吸收紫外或者可見光(通常200-800 nm)后發生價電子的躍遷所引起的。由于電子間能級躍遷的同時總是伴隨著振動和轉動能級間的躍遷,因此紫外可見光譜呈現寬譜帶。紫外可見吸收光譜的橫坐標為波長(nm),縱坐標為吸光度。紫外可見吸收光譜

    紫外可見吸收光譜最主要的原理依據

    紫外可見吸收光譜屬于分子光譜,是根據價電子的躍遷而產生的,分子或者離子對紫外可見光的吸收所產生的紫外可見光譜及其吸收程度,對物質的組成、含量和結構而進行的分析、測定和推斷。

    紫外可見吸收光譜法的工作原理

    紫外-可見吸收光譜的產生及基本原理2.1 物質對光的選擇性吸收分子的紫外-可見吸收光譜是基于分子內電子躍遷產生的吸收光譜進行分析的一種常用的光譜分析方法。當某種物質受到光的照射時,物質分子就會與光發生碰撞,其結果是光子的能量傳遞到了分子上。這樣,處于穩定狀態的基態分子就會躍遷到不穩定的高能態,即激發

    紫外可見吸收光譜產品原理及應用介紹

      紫外可見吸收光譜產品原理   分子的紫外可見吸收光譜是由于分子中的某些基團吸收了紫外可見輻射光后,發生了電子能級躍遷而產生的吸收光譜。由于各種物質具有各自不同的分子、原子和不同的分子空間結構,其吸收光能量的情況也就不會相同,因此,每種物質就有其特有的、固定的吸收光譜曲線,可根據吸收光譜上的某些特

    簡述紫外可見吸收光譜的基本原理

      紫外可見吸收光譜的基本原理是利用在光的照射下待測樣品內 部的電子躍遷,電子躍遷類型有:  (1)σ→σ* 躍遷 指處于成鍵軌道上的 σ 電子吸收光子后被激發躍遷到 σ* 反鍵軌道  (2)n→σ* 躍遷 指分子中處于非鍵軌道上的 n 電子吸收能量后向 σ*反鍵軌 道的躍遷  (3)π→π* 躍遷

    紫外可見吸收光譜的紫外光譜

    各種因素對吸收譜帶的影響表現為譜帶位移、譜帶強度的變化、譜帶精細結構的出現或消失等。譜帶位移包括藍移(或紫移,hypsochromic shift or blue shift))和紅移(bathochromic shift or red shift)。藍移(或紫移)指吸收峰向短波長移動,紅移指吸收峰

    紫外可見吸收光譜的性質

    1. 同一濃度的待測溶液對不同波長的光有不同的吸光度;2. 對于同一待測溶液,濃度愈大,吸光度也愈大;3. 對于同一物質,不論濃度大小如何,很大吸收峰所對應的波長(很大吸收波長 λmax) 相同,并且曲線的形狀也完全相同。

    紫外—可見吸收光譜的產生

    4.1.1.1 分子光譜和電子光譜紫外—可見分光光度法是利用某些物質的分子對波長范圍在200~800nm的電磁波的吸收作用來進行分析測定的一種方法。分子的紫外—可見吸收光譜是由價電子能級的躍遷而產生的。分子,甚至是最簡單的雙原子分子的光譜,也要比原子光譜復雜得多。這是由于在分子中,除了電子相對于原子

    紫外可見吸收光譜的特征

    1. 吸收峰的形狀及所在位置——定性、定結構的依據2. 吸收峰的強度——定量的依據A = lg(1/T)=κCLT:透射率k:摩爾吸收系數,單位:L·cm?1·mol?1C:濃度L:光程長紫外可見光譜的兩個重要特征波峰:λmax, κ例:λmaxEt = 279 nm (κ=5012,logk=3.

    紫外—可見吸收光譜的產生

    4.1.1.1 分子光譜和電子光譜紫外—可見分光光度法是利用某些物質的分子對波長范圍在200~800nm的電磁波的吸收作用來進行分析測定的一種方法。分子的紫外—可見吸收光譜是由價電子能級的躍遷而產生的。分子,甚至是最簡單的雙原子分子的光譜,也要比原子光譜復雜得多。這是由于在分子中,除了電子相對于原子

    紫外可見吸收光譜法的基本原理

    紫外可見吸收光譜的基本原理是利用在光的照射下待測樣品內部的電子躍遷,電子躍遷類型有:(1)σ→σ* 躍遷 指處于成鍵軌道上的σ電子吸收光子后被激發躍遷到σ*反鍵軌道(2)n→σ* 躍遷 指分子中處于非鍵軌道上的n電子吸收能量后向σ*反鍵軌道的躍遷(3)π→π* 躍遷 指不飽和鍵中的π電子吸收光波能量

    紫外可見吸收光譜法的基本原理

    紫外可見吸收光譜的基本原理是利用在光的照射下待測樣品內部的電子躍遷,電子躍遷類型有:(1)σ→σ* 躍遷 指處于成鍵軌道上的σ電子吸收光子后被激發躍遷到σ*反鍵軌道(2)n→σ* 躍遷 指分子中處于非鍵軌道上的n電子吸收能量后向σ*反鍵軌道的躍遷(3)π→π* 躍遷 指不飽和鍵中的π電子吸收光波能量

    紫外可見吸收光譜法的基本原理

    紫外可見吸收光譜的基本原理是利用在光的照射下待測樣品內部的電子躍遷,電子躍遷類型有:(1)σ→σ* 躍遷 指處于成鍵軌道上的σ電子吸收光子后被激發躍遷到σ*反鍵軌道(2)n→σ* 躍遷 指分子中處于非鍵軌道上的n電子吸收能量后向σ*反鍵軌道的躍遷(3)π→π* 躍遷 指不飽和鍵中的π電子吸收光波能量

    紫外/可見吸收光譜測量

    荷蘭Avantes公司突破了傳統分光光度計采用轉動光柵進行光譜掃描的技術,使用2048像素CCD陣列探測器和平面衍射光柵,實現了不必轉動光柵而對整個光譜的快速測量,每秒可實現900幅光譜的超高速采樣,保證了測量的準確性和重復性,同時搭配浸入式光纖探頭或流通池進行取樣,從而適用于野外測量、應急檢測、在

    紫外可見吸收光譜法

    分子的紫外-可見吸收光譜法是基于分子內電子躍遷產生的吸收光譜進行分析的一種常用的光譜分析法。分子在紫外-可見區的吸收與其電子結構緊密相關。紫外光譜的研究對象大多是具有共軛雙鍵結構的分子。膽甾酮(a)與異亞丙基丙酮(b)分子結構差異很大,但兩者具有相似的紫外吸收峰。兩分子中相同的O=C-C=C共軛結構

    紫外/可見吸收光譜測量

    荷蘭Avantes公司突破了傳統分光光度計采用轉動光柵進行光譜掃描的技術,使用2048像素CCD陣列探測器和平面衍射光柵,實現了不必轉動光柵而對整個光譜的快速測量,每秒可實現900幅光譜的超高速采樣,保證了測量的準確性和重復性,同時搭配浸入式光纖探頭或流通池進行取樣,從而適用于野外測量、應急檢測、在

    紫外可見吸收光譜的產生原因

    紫外-可見吸收光譜的產生及基本原理2.1物質對光的選擇性吸收分子的紫外-可見吸收光譜是基于分子內電子躍遷產生的吸收光譜進行分析的一種常用的光譜分析方法。當某種物質受到光的照射時,物質分子就會與光發生碰撞,其結果是光子的能量傳遞到了分子上。這樣,處于穩定狀態的基態分子就會躍遷到不穩定的高能態,即激發態

    紫外可見吸收光譜的產生原因

    紫外-可見吸收光譜的產生及基本原理2.1 物質對光的選擇性吸收分子的紫外-可見吸收光譜是基于分子內電子躍遷產生的吸收光譜進行分析的一種常用的光譜分析方法。當某種物質受到光的照射時,物質分子就會與光發生碰撞,其結果是光子的能量傳遞到了分子上。這樣,處于穩定狀態的基態分子就會躍遷到不穩定的高能態,即激發

    紫外可見吸收光譜的產生原因

    紫外-可見吸收光譜的產生及基本原理2.1物質對光的選擇性吸收分子的紫外-可見吸收光譜是基于分子內電子躍遷產生的吸收光譜進行分析的一種常用的光譜分析方法。當某種物質受到光的照射時,物質分子就會與光發生碰撞,其結果是光子的能量傳遞到了分子上。這樣,處于穩定狀態的基態分子就會躍遷到不穩定的高能態,即激發態

    紅外吸收光譜與紫外可見吸收光譜的區別

    一、兩者的原理不同:1、紫外分光光度計的原理:物質的吸收光譜本質上就是物質中的分子和原子吸收了入射光中的某些特定波長的光能量,相應地發生了分子振動能級躍遷和電子能級躍遷的結果。由于各種物質具有各自不同的分子、原子和不同的分子空間結構,其吸收光能量的情況也就不會相同。因此,每種物質就有其特有的、固定的

    紅外吸收光譜與紫外可見吸收光譜的區別

    紫外、可見吸收光譜常用于研究不飽和有機物,特別是具有共軛體系的有機化合物,而紅外光譜法主要研究在振動中伴隨有偶極矩變化的化合物(沒有偶極矩變化的振動在拉曼光譜中出現)。因此,除了單原子和同核分子如Ne、He、O2、H2等之外,幾乎所有的有機化合物在紅外光譜區均有吸收。除光學異構體,某些高分子量的高聚

    <td id="wa4yw"><option id="wa4yw"></option></td>
  • <td id="wa4yw"><kbd id="wa4yw"></kbd></td><noscript id="wa4yw"><source id="wa4yw"></source></noscript>
    <bdo id="wa4yw"><kbd id="wa4yw"></kbd></bdo><input id="wa4yw"></input>
    <table id="wa4yw"><kbd id="wa4yw"></kbd></table>
  • <td id="wa4yw"><option id="wa4yw"></option></td>
    <option id="wa4yw"></option>
  • <table id="wa4yw"></table>
  • XVideos