<td id="wa4yw"><option id="wa4yw"></option></td>
  • <td id="wa4yw"><kbd id="wa4yw"></kbd></td><noscript id="wa4yw"><source id="wa4yw"></source></noscript>
    <bdo id="wa4yw"><kbd id="wa4yw"></kbd></bdo><input id="wa4yw"></input>
    <table id="wa4yw"><kbd id="wa4yw"></kbd></table>
  • <td id="wa4yw"><option id="wa4yw"></option></td>
    <option id="wa4yw"></option>
  • <table id="wa4yw"></table>

  • 納米結構莫比烏斯環首次合成

    構建結構均勻的納米碳對于納米技術、電子學、光學和生物醫學應用中的功能材料的發展至關重要。據近日發表在《自然·合成》雜志上的論文,日本名古屋大學研究團隊已合成了一種帶狀分子納米碳,具有扭曲的莫比烏斯帶拓撲結構,即莫比烏斯碳納米帶。 分子納米碳科學是一種自下而上使用合成有機化學制造納米碳的方法。然而,迄今為止合成的分子納米碳僅具有簡單的結構,例如環狀、碗狀或帶狀。為了實現未知的和理論上預測的納米碳,有必要開發新方法來合成具有更復雜結構的分子納米碳。 2017年,名古屋大學研究團隊歷經60年首次化學合成碳納米帶,這是一種超短碳納米管。之后,莫比烏斯碳納米帶成為科學界夢寐以求的目標。 “與具有正常帶狀拓撲結構相比,這種扭曲的莫比烏斯碳納米帶應會表現出完全不同的特性和分子運動。然而,創造這種扭曲的結構說起來容易做起來難。”研究團隊負責人伊丹健一郎說,從之前的碳納米帶合成中得知,應變能是合成過程中最大的障礙。此外,帶狀結構內的額......閱讀全文

    雙重納米結構非晶碳薄膜問世

      近日,中科院蘭州化學物理研究所固體潤滑國家重點實驗室空間潤滑材料組,在國際上首次制備了一種具有雙重納米結構的非晶碳薄膜材料。試驗表明,該種薄膜材料具有極為優異的回彈性(彈性恢復系數高達95%),且在真空條件

    氮摻雜中空多孔碳納米籠分級結構

    氮摻雜中空多孔碳納米籠分級結構,特點有氮摻雜碳、中空結構、富含空隙、微觀納米籠、分級結構、具有在酸性環境和堿性環境條件下的良好氧還原活性。離材料合成領域太久,這個反應路徑好復雜,三個固體粉末混合在一起進行熱解,感覺這個分級結構是個固相反應。這種固相反應產率和克級別生產難度會大一些。The decom

    表面化學方法實現碳碳雙鍵和三鍵碳納米結構直接制備

    相比于傳統溶液化學,表面化學在原子級精準制備碳納米結構方面展現出許多優勢,其中最為廣泛應用的是通過脫鹵偶聯反應實現新穎碳納米結構的可控制備。然而截至到目前,表面化學反應用到的鹵化物前驅體分子大多還局限在同一個碳原子上只修飾一個鹵素原子的范疇。近期,許維教授課題組創新性地提出并設計了一系列前驅體分子,

    AFM納米碳管探針

    納米碳管探針??? 由于探針針尖的尖銳程度決定影像的分辨率,愈細的針尖相對可得到更高的分辨率,因此具有納米尺寸碳管探針,是目前探針材料明日之星。納米碳管(carbon nanotube)是由許多五碳環及六碳環所構成的空心圓柱體,因為納米碳管具有優異的電性、彈性與軔度, 很適合作為原子力顯微鏡的探針針

    錐形碳納米結構可用以制造柔軟透明顯示裝置

      在過去的幾年中,研究人員利用碳納米管和納米纖維制造出了一系列透明、可彎曲的設備,如有機發光二極管、晶體管和太陽能電池等。但是,要利用這些納米材料開發出場致電子發射器仍然是一項挑戰。日本和馬來西亞研究人員的最新研究則表明,解決這一挑戰的關鍵在于錐形碳納米結構(CNCSs)獨特的幾何形

    物理所宏觀碳納米結構復合界面設計研究取得進展

      隨著電子皮膚、柔性手機等概念的相繼提出和研究的不斷深入,作為柔性電子系統的重要組成部分,新型(如柔性,可拉伸,可彎折等)能量儲存和供給單元正迅速被人們所重視。發展具有高能量密度、高功率密度及高循環穩定性的輕薄新型能量存儲器件(例如:薄膜超級電容器)勢在必行。目前柔性可拉伸超級電容器研究已取得一定

    定制納米碳管傳送基因

      通過向個體細胞和組織內插入基因來治療疾病的基因治療已經成為了一個不斷創新的技術。它所面臨的挑戰是如何把治療核酸有效并安全的植入到目標細胞和器官中去。在最近開發的合成媒質中,碳納米管作為傳送載體具有可靠性。這是因為它們有高縱橫比以及改變細胞膜位置的能力,所以成為一種不錯的選擇。但問題是它們會在活的

    碳納米讓電池更耐用

      日前,遼寧大連化物所燃料電池催化劑貴金屬替代研究獲突破。該所包信和院士帶領的團隊近期創造性地給金屬鐵納米催化劑穿上了碳納米層“鎧甲”,極大地提高了鐵基催化劑在燃料電池中的穩定性和抗中毒能力,為未來非貴金屬催化劑最終在燃料電池中的應用探索了方向,也為燃料電池的大規模應用帶來了新希望。   眾所周

    日本首次合成碳納米帶

       日本名古屋大學的研究組最近首次成功合成了國際學界60年前理論上提出的筒狀碳分子“碳納米帶”。碳納米帶比同樣為筒狀結構的碳納米管(CNT)短,用于鑄模可獲得期望結構的碳納米管,將促進碳納米管的迅速普及。該成果發表在4月14日的《科學》雜志的電子版上。   研究組在合成無扭曲帶狀分子的基礎上,設計

    納米活碳催化高效農業

      “中國60年化肥施用量增百倍,有毒物質危及食品安全”,“化肥的利用率僅40%左右,大部分都形成了污染”,“ 長江生態系統已經崩潰,175種特有物種現在一半都不到”,“土壤重金屬含量超標,何談有機農業”。近段時間,媒體上有很多關于食品安全、生態環境的報道,越來越引起人們的關注和擔憂。解決土壤污

    碳納米材料家族增加新成員——彎曲納米石墨烯

      繼球狀的富勒烯、筒狀的碳納米管和片狀的石墨烯之后,碳納米材料家族又有了新成員。日本研究人員開發出一種像馬鞍一般彎曲的碳納米分子,有望在電子元件和醫療等領域得到應用。   名古屋大學教授伊丹健一郎率領的研究小組在15日的《自然?化學》雜志網絡版上報告了這一成果,他們將這種碳納米分子命名

    納米碳催化研究取得重要突破

    納米碳催化研究取得重要突破? ? ? ? 據了解,我國是一個聚氯乙烯(PVC)生產和消耗大國,2013年生產1529.5萬噸,其中75%是由煤經電石法制得的乙炔再在氯化汞(HgCl2)催化劑作用下經過氫氯化反應過程生產而來。這一過程造成了大量的汞(俗稱“水銀”)排放,對環境造成嚴重的污染。聯合國20

    納米活碳作物增產效果佳

      連云港經濟技術開發區麗港稀土實業有限公司開發的納米活碳液和納米活碳粉日前獲得國家專利。   據該公司技術負責人介紹,他們研發的碳液植物生產劑已先后在水稻、黃瓜、草莓、花卉等農作物上進行納米活碳試驗均獲得成功。水稻每畝加入3%。的碳粉、在降低肥料35%施用情況下,可增產17%。蝴蝶蘭、玫瑰等花卉

    納米硅碳研發機構落戶福建

      5月13日,中科院海西研究院與福建遠翔化工有限公司簽訂協議共同建設納米硅碳材料工程技術中心,國內首家專門從事研究開發納米硅碳材料與應用技術的研發機構正式落戶福建邵武。   地處邵武的福建遠翔化工有限公司董事長王承輝高興地告訴記者,“納米硅碳材料工程技術中心”項目總投資6000萬元,預期產值達2

    高曲率多層納米結構包覆過渡金屬氮碳材料用于氧電催化

        全文速覽  近日,陜西師范大學鄭浩銓教授、林海平教授和曹睿教授合作,設計制備了一種新型高曲率多層彎曲結構(也稱為洋蔥碳結構,onion-like carbon, OLC)納米球包覆Co-N-C(OLC/Co-N-C)材料,如下圖1所示。與20%Pt/C+RuO2復合貴金屬催化劑相比,OLC/

    固體所在碳包覆碳化物納米結構及性能研究方面取得進展

      最近,中科院合肥物質科學研究院固體物理研究所科研人員基于液相激光熔蝕(Laser ablation in liquids, LAL)技術,成功獲得了洋蔥層狀碳包覆的Co3C/OLC納米粒子。相對于無定形的殼層碳,洋蔥層狀的碳結晶性更好,具有更好的熱學和化學穩定性,以及優異的電傳導性和催化活性

    鋰電負極材料納米碳管的簡介

      納米碳管是近年來發現的一種新型碳晶體材料,它是一種直徑幾納米至幾十納米,長度為幾十納米至幾十微米的中空管,其性能如下:  納米管的制備有直流電弧法和催化熱解法。  催化熱法是將20%H2+80%CH4混合氣體在Ni+Al2O3的催化劑顆粒上于500℃熱解,將熱解的樣品研磨后,加入熱硝酸(80℃)

    《納米快報》:一維半導體納米結構光子學

    在基金委青年基金、納米重點項目和國家納米測試基金及973課題的支持下,湖南大學納米技術研究中心潘安練、鄒炳鎖教授等團隊成員和北京大學、國家納米中心以及德國馬普研究所合作,在一維半導體納米結構光子學的研究上取得了重大突破:首次正式提出了半導體一維納米結構中光子輸運的概念,建立光傳播的理論模型,并在實驗

    蘇州納米所在碳納米材料高能柔性電容器中取得進展

      隨著現代科學技術的發展,柔性、可穿戴、可折疊、智能化是電子設備發展的主流方向,為電子產品提供能量的儲能器件也逐步向輕、薄、韌等方向發展。柔性超級電容器是一種儲能器件,具有高容量、充放電速度快、安全環保等特點,在新興的電子智能設備等高新技術上有著廣闊的應用前景。碳纖維和碳納米管紗布等碳紡織品作為柔

    碳正離子的結構特點

    碳正離子與自由基一樣,是一個活潑的中間體。碳正離子有一個正電荷,最外層有6個電子。帶正電荷的碳原子以sp2雜化軌道與3個原子(或原子團)結合,形成3個σ鍵,與碳原子處于同一個平面。碳原子剩余的P軌道與這個平面垂直。碳正離子是平面結構。1963年有報道,直接觀察到簡單的碳正離子,證明了它的平面結構,為

    碳四植物的結構特點

    許多四碳植物在解剖上有一種特殊結構,即在維管束周圍有兩種不同類型的細胞:靠近維管束的內層細胞稱為鞘細胞,圍繞著鞘細胞的外層細胞是葉肉細胞。由葉肉細胞和維管束鞘細胞整齊排列的雙環結構,形象地稱為“花環形”結構。兩種不同類型的細胞各具不同的葉綠體。圍繞著維管束鞘細胞周圍的排列整齊致密的葉肉細胞中的葉綠體

    大連化物所納米碳催化研究取得重要突破

      我國是一個聚氯乙烯(PVC)生產和消耗大國,2013年生產1529.5萬噸,其中75%是由煤經電石法制得的乙炔再在氯化汞(HgCl2)催化劑作用下經過氫氯化反應過程生產而來。這一過程造成了大量的汞(俗稱“水銀”)排放,對環境造成嚴重的污染。聯合國2013年1月通過了旨在全球范圍內控制和減少汞排

    大連化物所納米碳催化研究取得重要突破

      我國是一個聚氯乙烯(PVC)生產和消耗大國,2013年生產1529.5萬噸,其中75%是由煤經電石法制得的乙炔再在氯化汞(HgCl2)催化劑作用下經過氫氯化反應過程生產而來。這一過程造成了大量的汞(俗稱“水銀”)排放,對環境造成嚴重的污染。聯合國2013年1月通過了旨在全球范圍內控制和減少汞排放

    熒光碳納米顆粒合成發現新方法

      熒光納米顆粒因其優良的特性及其在生物、化學等領域的廣泛應用,受到了廣泛的關注,如熒光金/銀納米顆粒應用于重金屬離子的檢測。但昂貴的成本限制了這些金屬納米顆粒的應用。目前,熒光碳納米顆粒由于其廉價的原料、良好的生物兼容性和很好的光穩定性等優點而備受關注。然而,現有報道關于熒光碳納米顆粒的合成及應用

    大連化物所納米碳材料催化研究獲進展

      采用廉價和儲量豐富的非貴金屬替代稀有的貴金屬作為催化劑,實現重要能源和化工過程的高效轉化是當今催化科學和化學化工研究的熱點。近日,中國科學院大連化學物理研究所催化基礎國家重點實驗室副研究員鄧德會和中科院院士包信和帶領的研究團隊在長期深入研究納米碳材料催化的基礎上,通過創新二維納米碳材料(類石墨烯

    我國碳納米X射線成像技術獲進展

    成像裝置圖   日前,由中科院深圳先進技術研究院承擔的國家科技支撐計劃“基于碳納米X射線發射源的CT系統研發”課題團隊利用自主研發的碳納米管薄膜,成功地獲取首張X射線二維成像圖。專家組認為這是我國在碳納米管X射線源成像研究方面取得的突破性進展和成果。   據介紹,碳納米管X射線源是近幾

    “碳氮微納米線研究”獲得新成果

    富氮碳氮微納米線的氣相方法合成。 碳氮材料具有較低的密度、良好的化學惰性和生物兼容性。理論預測還表明β-C3N4等碳氮晶體可能具有與金剛石相媲美的高硬度。然而由于氮元素具有很高的化學穩定性,在高溫條件下通常以氮氣的形式溢出。因此在以往報道的碳-氮體系材料中,氮含量通常偏低。 國家納米科學中心孫連

    我學者首次提出“超級碳納米點”概念

      近日,中科院長春光機所曲松楠團隊在國際上首次提出“超級碳納米點”概念,并研制出基于超級碳納米點的水觸發“納米熒光炸彈”。據了解,復合這種“納米熒光炸彈”的紙,可以實現噴水熒光打印、指紋汗孔熒光采集等多種實際應用。相關成果日前發表于《先進材料》雜志。  據了解,熒光成像可作為一種有效的技術方法,在

    鋰電負極材料納米碳管的功能介紹

      納米負極材料主要是希望利用材料的納米特性,減少充放電過程中體積膨脹和收縮對結構的影響,從而改進循環性能。實際應用表明:納米特性的有效利用可改進這些負極材料的循環性能,然而離實際應用還有一段距離。關鍵原因是納米粒子隨循環的進行而逐漸發生結合,從而又失去了納米粒子特有的性能,導致結構被破壞,可逆容量

    蘇州納米構建金納米棒@金納米粒子手性螺旋超結構

      等離子體納米粒子及其組裝結構因為優異的光學特性在納米科技中具有廣泛應用,如超材料、生物傳感器、光電器件等。精準構建等離子體納米結構對于光學特性的深入研究意義重大,而精確調控等離子體納米粒子的表面功能性質則是進一步獲得復雜自組裝體系的關鍵。目前借助各種物理和化學方法,可在納米粒子表面的一定區域范圍

    <td id="wa4yw"><option id="wa4yw"></option></td>
  • <td id="wa4yw"><kbd id="wa4yw"></kbd></td><noscript id="wa4yw"><source id="wa4yw"></source></noscript>
    <bdo id="wa4yw"><kbd id="wa4yw"></kbd></bdo><input id="wa4yw"></input>
    <table id="wa4yw"><kbd id="wa4yw"></kbd></table>
  • <td id="wa4yw"><option id="wa4yw"></option></td>
    <option id="wa4yw"></option>
  • <table id="wa4yw"></table>
  • XVideos