簡述細胞損傷時線粒體結構的改變
線粒體嵴是能量代謝的明顯指征,但嵴的增多未必均伴有呼吸鏈酶的增加.嵴的膜和酶平行增多反映細胞的功能負荷加重,為一種適應狀態的表現;反之,如嵴的膜和酶的增多不相平行,則是胞漿適應功能障礙的表現,此時細胞功能并不升高. 在急性細胞損傷時(大多為中毒或缺氧),線粒體的嵴被破壞;慢性亞致死性細胞損傷或營養缺乏時,線粒體的蛋白合成受障,以致線粒體幾乎不再能形成新的嵴. 根據細胞損傷的種類和性質,可在線粒體基質或嵴內形成病理性包含物. 這些包含物有的呈晶形或副晶形(可能由蛋白構成),如在線粒體性肌病或進行性肌營養不良時所見;有的呈無定形的電子致密物,常見于細胞趨于壞死時,乃線粒體成分崩解的產物(脂質和蛋白質),被視為線粒體不可復性損傷的表現. 線粒體損傷的另一種常見改變為髓鞘樣層狀結構的形成,這是線粒體膜損傷的結果. 衰亡或受損的線粒體,最終由細胞的自噬過程加以處理并最后被溶酶體酶所降解消化.......閱讀全文
簡述細胞損傷時線粒體結構的改變
線粒體嵴是能量代謝的明顯指征,但嵴的增多未必均伴有呼吸鏈酶的增加.嵴的膜和酶平行增多反映細胞的功能負荷加重,為一種適應狀態的表現;反之,如嵴的膜和酶的增多不相平行,則是胞漿適應功能障礙的表現,此時細胞功能并不升高. 在急性細胞損傷時(大多為中毒或缺氧),線粒體的嵴被破壞;慢性亞致死性細胞損傷或
細胞損傷時線粒體數量的改變介紹
線粒體的平均壽命約為10天.衰亡的線粒體可通過保留的線粒體直接分裂為二予以補充. 在病理狀態下,線粒體的增生實際上是對慢性非特異性細胞損傷的適應性反應或細胞功能升高的表現.例如心瓣膜病時的心肌線粒體,周圍血液循環障礙伴間歇性跛行時的骨骼肌線粒體的呈增生現象. 線粒體的增生也可見于某些腫瘤組織
細胞損傷時線粒體大小改變的相關介紹
細胞損傷時最常見的改變為線粒體腫大.根據線粒體的受累部位可分為基質型腫脹和嵴型腫脹二種類型,而以前者為常見. 基質型腫脹時線粒體變大變圓,基質變淺,嵴變短變少甚至消失.在極度腫脹時,線粒體可轉化為小空泡狀結構.此型腫脹為細胞水腫的部分改變.光學顯微鏡下所謂的濁腫細胞中所見的細顆粒即腫大的線粒體
細胞超微結構細胞損傷時核結構的改變
細胞在衰亡及損傷過程中的重要表征之一是核的改變,主要表現為核膜和染色質的改變. 核濃縮(karyopyknosis):染色質在核漿內聚集成致密濃染的大小不等的團塊狀,繼而整個細胞核收縮變小,最后僅留下一致密的團塊,是為核濃縮.這種濃縮的核最后還可再崩解為若干碎片(繼發性核碎裂)而逐漸消失.
細胞損傷時細胞核的具體改變
、核大小的改變 核的大小通常反映著核的功能活性狀態,功能旺盛時核增大,核漿淡染,核仁也相應增大和(或)增多。如果這種狀態持續較久,則可出現多倍體核或形成多核巨細胞。多倍體核在正常情況下亦可見于某些功能旺盛的細胞,如肝細胞中可見約20%為多倍體核。在病理狀態下,如晚期肝炎及實驗性肝癌前期等均可見多
細胞損傷時核的大小的改變介紹
核的大小通常反映著核的功能活性狀態,功能旺盛時核增大,核漿淡染,核仁也相應增大和(或)增多.如果這種狀態持續較久,則可出現多倍體核或形成多核巨細胞.多倍體核在正常情況下亦可見于某些功能旺盛的細胞,如肝細胞中可見約20%為多倍體核.在病理狀態下,如晚期肝炎及實驗性肝癌前期等均可見多倍體的肝細胞明顯
簡述線粒體DNA的組成結構
研究人員發明了轉換卵細胞基因材料的方法,用擁有健康線粒體的卵細胞取代攜帶錯誤線粒體DNA的卵細胞。結果是,胚胎會攜帶來自母親和父親的核DNA,以及卵細胞捐獻者的線粒體DNA。 mtDNA雖能合成蛋白質,但其種類十分有限。迄今已知,mtDNA編碼的RNA和多肽有:線粒體核糖體中2種rRNA(12
簡述細胞凋亡與線粒體的結構與功能的關系
如果線粒體有大量PT孔道形成,細胞ATP濃度很快下降,則在致凋亡的蛋白酶被活化前細胞就壞死了。而如果PT孔道的誘導生成是一種比較緩和與持續的狀態,在細胞ATP濃度下降前專一的蛋白酶被激活;而另一方面ΔΨm的耗散產生的超氧陰離子則導致細胞死亡。細胞凋亡是一把雙刃劍。一方面是機體發育的正常過程,另一
哪種藥物可以誘導細胞線粒體損傷實驗
比如人體血液的紅細胞.只有核糖體.蛔蟲體細胞沒有線粒體.蛔蟲是兼性厭氧型生物.植物細胞的導管細胞,在形成后高度木栓化中空,成為死細胞,所以沒有線粒體.植物根系根部頂端的根冠細胞,是一層高度木質化的細胞,無線粒體.這些例子本來就很少,很難多舉.真核細胞能進行無氧呼吸的有:1.植物的根系細胞在缺氧的情況
肝細胞損傷時的代謝障礙
肝細胞損傷時的代謝障礙是臨床醫學檢驗技士/技師/主管技師考試復習需要了解的生化檢驗知識,醫學|教育網搜集整理了相關內容與考生分享,希望給予大家幫助!(一)肝細胞損傷時蛋白質代謝的變化肝細胞合成白蛋白的能力很強,正常人每天能合成10g.當肝功能嚴重受損時,血漿膠體滲透壓可因白蛋白的合成不足而降低,同時
PNAS:失控的線粒體會引起細胞端粒損傷
匹茲堡大學希爾曼癌癥中心的研究人員為長期以來的觀點提供了第一個具體證據,即患病的線粒體污染了它們本應提供能量的細胞。 這篇近日發表在PNAS的論文涉及一項因果實驗,目的是啟動線粒體連鎖反應,這種反應會對細胞造成破壞,一直到遺傳水平。圖片來源:Qian et al. (2019), PNAS
線粒體基質的線粒體結構
線粒體基質 線粒體基質是線粒體中由線粒體內膜包裹的內部空間,其中含有參與三羧酸循環、脂肪酸氧化、氨基酸降解等生化反應的酶等眾多蛋白質,所以較細胞質基質黏稠。蘋果酸脫氫酶是線粒體基質的標志酶。線粒體基質中一般還含有線粒體自身的DNA(即線粒體DNA)、RNA和核糖體(即線粒體核糖體)。 線粒體
DNA損傷的改變類型
點突變(point mutation)指DNA上單一堿基的變異。嘌呤替代嘌呤(A與G之間的相互替代)、嘧啶替代嘧啶(C與T之間的替代)稱為轉換(transition);嘌呤變嘧啶或嘧啶變嘌呤則稱為顛換(transvertion)。缺失(deletion)指DNA鏈上一個或一段核苷酸的消失。插入(in
線粒體的常見損傷有哪些
線粒體疾病的常見癥狀如下:1.線粒體肌病通常開始于20歲。其臨床特點是骨骼肌對疲勞極其耐受,即疲勞是由輕度活動引起的,常伴有肌肉酸痛和壓痛,肌肉萎縮少見。易誤診為多肌炎、重癥肌無力、進行性肌營養不良。線粒體包括:慢性進行性眼外肌麻痹(CPEO)通常發生于兒童時期。首先表現為眼瞼下垂,所有眼外肌進展緩
細胞超微結構線粒體的相關概述
線粒體(mitochondrion)是細胞內主要的能量形成所在,故不論在生理上或病理上都具有十分重要的意義. 線粒體為線狀,長桿狀,卵圓形或圓形小體,外被雙層界膜.外界膜平滑,內界膜則折成長短不等的嵴并附有基粒.內外界膜之間為線粒體的外室,與嵴內隙相連,內界膜內側為內室(基質室). 在合成甾
關于細胞器—線粒體的結構介紹
線粒體具有雙層膜結構,外膜是平滑而連續的界膜;內膜反復延伸折入內部空間,形成嵴。內外膜不相通,形成膜腔。光鏡下,線粒體成顆粒狀或短桿狀,橫徑0.2um~8um,細菌大小。線粒體是細胞內產生ATP的重要部位,是細胞內動力工廠或能量轉換器。線粒體具有半自主性,腔內有成環狀的DNA分子、少量RNA和7
貧血時紅細胞形態有哪些改變?
1、紅細胞大小改變 ? 小紅細胞 ? 大紅細胞 ? 巨紅細胞 ? 紅細胞大小不均 ? 2、紅細胞形態改變 ? 球形紅細胞 ? 橢圓形紅細胞 ? 靶形紅細胞 ? 口形紅細胞 ? 鐮形紅細胞 ? 棘形紅細胞 ?
線粒體的結構
線粒體由外至內可劃分為線粒體外膜(OMM)、線粒體膜間隙、線粒體內膜(IMM)和線粒體基質四個功能區。處于線粒體外側的膜彼此平行,都是典型的單位膜。其中,線粒體外膜較光滑,起細胞器界膜的作用;線粒體內膜則向內皺褶形成線粒體嵴,負擔更多的生化反應。這兩層膜將線粒體分出兩個區室,位于兩層線粒體膜之間
細胞化學基礎線粒體DNA組成結構
研究人員發明了轉換卵細胞基因材料的方法,用擁有健康線粒體的卵細胞取代攜帶錯誤線粒體DNA的卵細胞。結果是,胚胎會攜帶來自母親和父親的核DNA,以及卵細胞捐獻者的線粒體DNA。mtDNA雖能合成蛋白質,但其種類十分有限。迄今已知,mtDNA編碼的RNA和多肽有:線粒體核糖體中2種rRNA(12S及16
簡述肝細胞損傷的治療原則
對于肝細胞損傷的治療,宜采取控制病因、阻斷損傷繼續加重和促進肝細胞再生及修復的綜合治療策略。這不僅有助于肝實質細胞本身數量、結構和功能的維持,也有助于延緩纖維化進展,預防肝硬化和肝細胞癌的發生。
慢性肝細胞損傷時的血漿蛋白變化
慢性肝細胞損傷時血漿蛋白的變化是關于醫學檢驗職稱的生化檢驗知識,醫學|教育網搜集整理了相關內容與考生分享,希望給予大家幫助!血漿白蛋白可反映肝臟合成功能,代表肝的儲備功能。此外前白蛋白(PA)及抗凝血酶Ⅲ(AT-Ⅲ)亦能很好地反映肝臟的儲備能力,藉以判斷慢性肝細胞損傷的病變程度。γ~球蛋白增高的程度
DNA損傷的改變類型介紹
點突變(point mutation)指DNA上單一堿基的變異。嘌呤替代嘌呤(A與G之間的相互替代)、嘧啶替代嘧啶(C與T之間的替代)稱為轉換(transition);嘌呤變嘧啶或嘧啶變嘌呤則稱為顛換(transvertion)。缺失(deletion)指DNA鏈上一個或一段核苷酸的消失。插入(in
線粒體腦肌病的病理改變特點
1. 肌肉活檢病理所見具有特征性的形態學改變,常規恒冷冰凍切片,MGT染色可見RRF。早在1960年由Engel首先應用MGT染色發現肌膜下和肌纖維之間呈不規則紅染顆粒狀改變。最近分子生物學研究表明RRF是mt DNA大量重排或線粒體tRNA基因點突變的相應產物。mt DNA大量重排和mt DN
線粒體損傷如何點燃“自體炎癥之火”?
當受到壓力、受損或功能失調時,線粒體會將氧化和分裂的DNA (mtDNA)排出到細胞質(細胞器漂浮在細胞內的液體)中,然后進入血液,引發炎癥。在狼瘡和類風濕性關節炎等自身免疫性疾病中,循環氧化mtDNA的數量與疾病的嚴重程度、突然發作以及患者對治療的反應程度相關。一個困擾該領域的未解問題是,氧化的m
細胞線粒體內部精細結構研究(二)
2、改良了傳統SIM方法產生衍射光柵的方法2D-SIM成像需要通過產生兩束互相干涉的光來形成三種不同偏振方向,且光強在空間上呈正弦變化的結構光。在傳統的SIM成像方法中,這一過程除了要依靠液晶硅基的空間光調制器(LCOS-SLM)對光相位進行調制之外,還需要一種特殊的光學器件來改變光的偏振方向——旋
細胞線粒體內部精細結構研究(一)
生物圈的小伙伴肯定還記得前段時間的一則刷屏新聞: 北京大學陳良怡教授團隊和華中科技大學譚山教授團隊合作,成功發明了一種新型結構光照明超分辨顯微成像技術——海森結構光照明顯微鏡。研究成果于高水平學術期刊Nature Biotechnology(IF=41.67)進行了發表。 之所以轟動,是因為該技術擁
線粒體或能改變機體的代謝和基因表達!
大約15億年前,微小的訪客來到細胞中生活,隨后這些細胞進化成為植物和動物生命(包括人類),這些訪客就是線粒體,其是一種小型的細胞器,能夠產生細胞生存所需要的大約90%的化學能量,從進化學的角度來講,人類、動物和植物實際上是兩種有機體的完美結合。線粒體擁有自身的DNA,人類細胞的線粒體有13個基因
線粒體DNA的組成結構
研究人員發明了轉換卵細胞基因材料的方法,用擁有健康線粒體的卵細胞取代攜帶錯誤線粒體DNA的卵細胞。結果是,胚胎會攜帶來自母親和父親的核DNA,以及卵細胞捐獻者的線粒體DNA。 mtDNA雖能合成蛋白質,但其種類十分有限。迄今已知,mtDNA編碼的RNA和多肽有:線粒體核糖體中2種rRNA(12
線粒體DNA的組成結構
研究人員發明了轉換卵細胞基因材料的方法,用擁有健康線粒體的卵細胞取代攜帶錯誤線粒體DNA的卵細胞。結果是,胚胎會攜帶來自母親和父親的核DNA,以及卵細胞捐獻者的線粒體DNA。mtDNA雖能合成蛋白質,但其種類十分有限。迄今已知,mtDNA編碼的RNA和多肽有:線粒體核糖體中2種rRNA(12S及16
線粒體DNA的組成結構
研究人員發明了轉換卵細胞基因材料的方法,用擁有健康線粒體的卵細胞取代攜帶錯誤線粒體DNA的卵細胞。結果是,胚胎會攜帶來自母親和父親的核DNA,以及卵細胞捐獻者的線粒體DNA。mtDNA雖能合成蛋白質,但其種類十分有限。迄今已知,mtDNA編碼的RNA和多肽有:線粒體核糖體中2種rRNA(12S及16