<td id="wa4yw"><option id="wa4yw"></option></td>
  • <td id="wa4yw"><kbd id="wa4yw"></kbd></td><noscript id="wa4yw"><source id="wa4yw"></source></noscript>
    <bdo id="wa4yw"><kbd id="wa4yw"></kbd></bdo><input id="wa4yw"></input>
    <table id="wa4yw"><kbd id="wa4yw"></kbd></table>
  • <td id="wa4yw"><option id="wa4yw"></option></td>
    <option id="wa4yw"></option>
  • <table id="wa4yw"></table>

  • 關于烯烴的自由基加成反應介紹

    當有過氧化物(如H2O2,R-O-O-R等)存在,氫溴酸與丙烯或其他不對稱烯烴起加成反應時,反應取向是反馬爾科夫尼科夫規則的。此反應不是親電加成反應而是自由基加成反應。它經歷了鏈引發、鏈傳遞、鏈終止階段。 首先過氧化物如過氧化二苯甲酰,受熱時分解成苯酰氧自由基,或苯自由基,促進溴化氫分解為溴自由基,這是鏈引發階段。 溴自由基與不對稱烯烴加成后生成一個新的自由基,這個新自由基與另一分子HBr反應而生成一溴代烷和一個新的溴自由基,這是鏈傳遞階段。 在這個鏈傳遞階段中,溴自由基加成也有兩個取向,以生成穩定自由基為主要取向,所以,生成的產物(Ⅱ)與親電加成產物不同,即所謂反馬氏規則。 只有烯烴與溴化氫在有過氧化物存在下或光照下才生成反馬氏規則的產物。過氧化物的存在,對與HCl和HI的加成反應方式沒有影響。 為什么其他鹵化氫與不對稱烯烴的加成在過氧化物存在下仍服從馬氏規則呢?這是因為H-Cl鍵的解離能(431kJ/mol)比......閱讀全文

    關于烯烴的自由基加成反應介紹

      當有過氧化物(如H2O2,R-O-O-R等)存在,氫溴酸與丙烯或其他不對稱烯烴起加成反應時,反應取向是反馬爾科夫尼科夫規則的。此反應不是親電加成反應而是自由基加成反應。它經歷了鏈引發、鏈傳遞、鏈終止階段。  首先過氧化物如過氧化二苯甲酰,受熱時分解成苯酰氧自由基,或苯自由基,促進溴化氫分解為溴自

    關于烯烴的親電加成反應介紹

      一、加鹵素反應  烯烴容易與鹵素發生反應,是制備鄰二鹵代烷的主要方法:  CH2=CH2+X2→CH2X-CH2X  ① 這個反應在室溫下就能迅速反應,實驗室用來鑒別烯烴的存在.(溴的四氯化碳溶液是紅棕色,溴消耗后變成無色)  ② 不同的鹵素反應活性規律:  氟反應激烈,不易控制;碘是可逆反應,

    關于烯烴的親電加成反應的特點介紹

      1.不對稱烯烴加成規律  當烯烴是不對稱烯烴(雙鍵兩碳被不對稱取代)時, 酸的質子主要加到含氫較多的碳上,而負性離子加到含氫較少的碳原子上稱為馬爾科夫尼科夫經驗規則,也稱不對稱烯烴加成規律。烯烴不對稱性越大,不對稱加成規律越明顯。  2.烯烴的結構影響加成反應  烯烴加成反應的活性:  (CH3

    烯烴親電加成反應的相關介紹

      烯烴可以與多種親電試劑發生加成反應。例如烯烴與溴的加成,溴分子受到外界影響極化為一端帶微正電荷、另一端帶微負電荷的極性分子(見結構式a),其正端與烯烴雙鍵作用,最初形成π配位化合物(b),接著發生共價鍵異裂而得帶正電荷的σ配合物(c)和溴離子: 自由基加成。自由基加成反應屬于自由基反應的范疇,比

    共軛二烯烴的親電加成反應介紹

      和1,2-加成和1,4-加成:極性試劑有利于1,4-加成;低溫有利于1,2-加成,高溫有利于1,4-加成。  共軛二烯烴同普通烯烴一樣,容易與鹵素、鹵化氫等親電試劑發生加成反應;它的特點是比普通烯烴更容易發生加成反應,但由于中間體變化,生成多種加成產物.共軛二烯的部分加成產物,即1,2-和1,4

    氨基與烯烴加成反應條件

    催化劑活化烯烴的雙鍵。烯烴可以和胺反應,機理是催化劑活化氨基的雙鍵是電子云密度發生偏移,胺含有孤對電子的N原子進攻雙鍵的一端,從而發生親核加成反應。氨基和胺基的區別是什么,其實嚴格意義上來說只有氨基并沒有胺基。一般當NH是在該物質的官能團排序是最高的話,就是胺。

    脂環化合物環烯烴的加成反應介紹

    環烯烴可以與鹵素、鹵化氫、硫酸等發生加成反應,加成反應發生在碳碳雙鍵的位置。當雙鍵上含有取代基的環烯烴與極性試劑發生加成時遵守馬爾科夫尼科夫規則。環烯烴的加成反應環烯烴的加成反應

    共軛二烯烴的親電加成反應

    和1,2-加成和1,4-加成:極性試劑有利于1,4-加成;低溫有利于1,2-加成,高溫有利于1,4-加成。共軛二烯烴同普通烯烴一樣,容易與鹵素、鹵化氫等親電試劑發生加成反應;它的特點是比普通烯烴更容易發生加成反應,但由于中間體變化,生成多種加成產物.共軛二烯的部分加成產物,即1,2-和1,4-加成產

    關于烯烴的結構介紹

      在單烯烴中,雙鍵碳采取sp2雜化,三個sp2雜化軌道處于同一平面。未參與雜化的p軌道與該平面垂直。兩個雙鍵碳原子各用一個sp2雜化軌道通過軸向重疊形成δ鍵,各用一個p軌道通過側面重疊形成π鍵。碳碳雙鍵是由一根δ鍵和一根π鍵共同組成的。  由于π鍵是通過側面重疊形成的,雙鍵碳原子不能再以碳碳δ鍵為

    關于烯烴的分類介紹

      含有一個碳碳雙鍵的烯烴稱為單烯烴,鏈狀單烯烴的通式為CnH2n。含有多于一個碳碳雙鍵的烯烴稱為多烯烴。碳碳雙鍵的數目最少的多烯烴是二烯烴或稱雙烯烴,又可分為三類:兩個雙鍵連在同一個碳原子上的二烯烴稱為累積二烯烴或稱聯烯,這類化合物數量較少;兩個雙鍵被兩個或兩個以上單鍵隔開的二烯烴稱為孤立二烯烴,

    烯烴的化學性質與反應

    烯烴的化學性質比較穩定,但比烷烴活潑。考慮到烯烴中的碳碳雙鍵比烷烴中的碳碳單鍵強,所以大部分烯烴的反應都有雙鍵的斷開并形成兩個新的單鍵。催化加氫反應烯烴與氫作用生成烷烴的反應稱為加氫反應,又稱氫化反應。加氫反應的活化能很大,即使在加熱條件下也難發生,而在催化劑的作用下反應能順利進行,故稱催化加氫。在

    關于萜類的加成反應介紹

      萜類成分中的雙鍵多能與氫鹵酸類如氫碘酸或氯化氫在冰乙酸溶液中反應,生成結晶形加成產物。也能吸收溴 (于冰乙酸或乙醚-乙醇溶液中) 生成溴化物而具有一定的理化性質。如果混合冰乙酸和亞硝酸鈉振搖則生成亞氮氧化物或偽亞氮氧化物而顯特殊顏色。假若將未飽和的萜類成分加亞硝酸戊酯和濃鹽酸混合振搖并保持低溫,

    關于聚烯烴的種類介紹

      由于原料豐富,價格低廉,容易加工成型,綜合性能優良,因此是一類產量最大 ,應用十分廣泛的高分子材料。其中以聚乙烯、聚丙烯最為重要。主要品種有聚乙烯以及以乙烯為基礎的一些共聚物,如乙烯-醋酸乙烯共聚物,乙烯-丙烯酸或丙烯酸酯的共聚物,還有聚丙烯和一些丙烯共聚物、聚1-丁烯、聚4-甲基-1-戊烯、環

    加成反應的基本分類

    親核反應親核加成反應是由親核試劑與底物發生的加成反應。反應發生在碳氧雙鍵、碳氮三鍵、碳碳三鍵等等不飽和的化學鍵上。最有代表性的反應是醛或酮的羰基與格氏試劑加成的反應。RC=O + R'MgCl → RR'C-OMgCl再水解得醇,這是合成醇的良好辦法。在羰基中,O稍顯電負性;在格氏試

    關于自由基的發現介紹

      歷史上第一個被發現和證實的自由基是由摩西·岡伯格在1900年于密歇根大學發現的三苯甲基自由基,該自由基在隔絕空氣的條件下發生二聚,形成“六苯基乙烷”  簡單的有機自由基,如甲基自由基、乙基自由基,是在20年代通過氣相反應證實的。有機自由基作為活潑中間體,是在30年代由D.H.海伊、W.A.沃特斯

    關于自由基的來源介紹

      1、自動氧化(體內一些分子,例如兒茶酚胺、血紅蛋白、肌紅蛋白、細胞色素C和巰基在氧化的過程中會產生自由基。)  2、酶促氧化(一些經由酶催化的氧化過程會產生自由基。)  3、呼吸帶入(吞噬細胞在清除外來微生物時會產生自由基。)  4、藥物(例如某些抗生素、抗癌藥物會在體內產生自由基,特別是在高氧

    關于自由基的反應介紹

      有機化合物(Organic compounds)發生化學反應時,總是伴隨著一部分共價鍵(covalent bond)的斷裂和新的共價鍵的生成。例如酪氨酸自由基(tyrosine radical),共價鍵的斷裂可以有兩種方式:均裂(homolytic bond cleavage)和異裂(heter

    關于加成反應的簡介

      加成反應是一種有機化學反應,它發生在有雙鍵或三鍵(不飽和鍵)的物質中。  兩個或多個分子互相作用,生成一個加成產物的反應稱為加成反應(addition reaction)。加成反應可以是離子型的、自由基型的和協同的。離子型加成反應是化學鍵異裂引起的,分為親電加成(electrophilic ad

    關于加成反應的基本信息介紹

      加成反應是不飽和化合物類的一種特征反應。  加成反應是反應物分子中以重鍵結合的或共軛不飽和體系末端的兩個原子,在反應中分別與由試劑提供的基團或原子以σ鍵相結合,得到一種飽和的或比較飽和的加成產物。這個加成產物可以是穩定的;也可以是不穩定的中間體,隨即發生進一步變化而形成穩定產物。  加成反應可分

    關于芳香烴的加成反應介紹

      1.苯的加成反應  苯具有特殊的穩定性,一般不易發生加成反應。但在特殊情況下,芳烴也能發生加成反應,而且總是三個雙鍵同時發生反應,形成一個環己烷體系。如苯和氯在陽光下反應,生成六氯代環己烷。  只在個別情況下,一個雙鍵或兩個雙鍵可以單獨發生反應。  2.萘、蒽和菲的加成反應  萘比苯容易發生加成

    簡述過氧化物效應的發現過程

      過氧化物效應又稱卡拉施效應,于1933年由卡拉施(M. S. Kharasch)等人發現。在光照或過氧化物存在下氫溴酸與不對稱烯烴反應,生成的加成產物與按馬爾可夫尼可夫規則所預測的結果正好相反。而發生這種“反常”加成的原因是由于光或過氧化物的作用,產生了自由基,發生了自由基加成反應,這種“反常”

    過氧化物效應的發現過程

    過氧化物效應又稱卡拉施效應,于1933年由卡拉施(M. S. Kharasch)等人發現。在光照或過氧化物存在下氫溴酸與不對稱烯烴反應,生成的加成產物與按馬爾可夫尼可夫規則所預測的結果正好相反。而發生這種“反常”加成的原因是由于光或過氧化物的作用,產生了自由基,發生了自由基加成反應,這種“反常”的加

    關于烯烴的基本信息介紹

      烯烴是指含有C=C鍵(碳碳雙鍵)的碳氫化合物。屬于不飽和烴,分為鏈烯烴與環烯烴。按含雙鍵的多少分別稱單烯烴、二烯烴等。雙鍵中有一根屬于能量較高的π鍵,不穩定,易斷裂,所以會發生加成反應。  鏈狀單烯烴分子通式為CnH2n,常溫下C2-C4為氣體,是非極性分子,不溶或微溶于水。雙鍵基團是烯烴分子中

    關于共軛二烯烴的應用介紹

      以丁二烯和異戊二烯為代表的碳四及碳五餾分用途越來越廣泛。丁二烯是C4餾分中最重要的組分之一,在石油化工烯烴原料中的地位僅次于乙烯和丙烯。C5餾分中最具有利用價值的是異戊二烯、間戊二烯、和環戊二烯三種共軛二烯烴,其中異戊二烯是主要產品之一。作為典型的共軛二烯烴,丁二烯和異戊二烯是合成橡膠的主要原料

    關于單烯烴的系統命名介紹

      1、先找出含雙鍵的最長碳鏈,把它作為主鏈,并按主鏈中所含原子數把該化合物命名為某烯。如果主鏈含有四個碳原子,即叫做丁烯;十個碳以上用漢字數字,再加上碳字,如十二碳烯。  2、從主鏈靠近雙鍵的一端開始,依次將主鏈的碳原子編號,使雙鍵的碳原子位號較小。  3、把雙鍵碳原子的最小位號寫在烯的名稱的前面

    關于烯烴的催化加氫反應介紹

      烯烴與氫作用生成烷烴的反應稱為加氫反應,又稱氫化反應。  加氫反應的活化能很大,即使在加熱條件下也難發生,而在催化劑的作用下反應能順利進行,故稱催化加氫。  在有機化學中,加氫反應又稱還原反應。  這個反應有如下特點:  ① 轉化率接近100%,產物容易純化。(實驗室中常用來合成小量的烷烴;烯烴

    關于自由基的對抗的介紹

      給予負離子,使生物體體內過剩的活性氧還原,就能夠抑制生物體的氧化。負離子能夠使生物體容易攝取維他命頪,氨基酸,礦物質等,這些成分能夠分解,消除活性氧,提高SOD的活性。所以負離子是生物體不可或缺的物質。負離子是唯一能夠消除活性氧自由基,保護生物體的自然要素。  負離子沒有副作用,能夠促進自然治愈

    脂環化合物的環烷烴的環烯烴的加成反應

    環烯烴可以與鹵素、鹵化氫、硫酸等發生加成反應,加成反應發生在碳碳雙鍵的位置。當雙鍵上含有取代基的環烯烴與極性試劑發生加成時遵守馬爾科夫尼科夫規則。?環烯烴的加成反應環烯烴的加成反應

    關于自由基的存在空間介紹

      自由基由于含有不成對電子,表現得非常活躍,而存在空間相當廣泛。  科學家在二十世紀初從煙囪和汽車尾氣中發現了這種十分活躍的物質。隨后的研究表明,自由基的生成過程復雜多樣,比如,加熱、燃燒、光照,一種物質與另一種物質的接觸或任何一種化學反應都會產生自由基。簡單地說,在日常生活中,烹飪、吸煙等活動都

    關于自由基的研究現狀介紹

      比起細菌學、病毒學等很多學術領域來說,自由基還是一門比較年輕的學科。人類對自由基的研究開始于二十世紀初,最初的研究主要是自由基的化學反應過程,隨后自由基知識滲透到生物學領域。雖然在二十世紀六十年代人們已經認識到自由基與疾病的密切關系,但由于受到技術方法的限制,研究進展緩慢。研究短壽命自由基的技術

    <td id="wa4yw"><option id="wa4yw"></option></td>
  • <td id="wa4yw"><kbd id="wa4yw"></kbd></td><noscript id="wa4yw"><source id="wa4yw"></source></noscript>
    <bdo id="wa4yw"><kbd id="wa4yw"></kbd></bdo><input id="wa4yw"></input>
    <table id="wa4yw"><kbd id="wa4yw"></kbd></table>
  • <td id="wa4yw"><option id="wa4yw"></option></td>
    <option id="wa4yw"></option>
  • <table id="wa4yw"></table>
  • XVideos