請問特征X射線如何產生?
一束高能粒子(射線)在與原子的相互作用下,如果其能量大于或等于原子某一軌道電子的結合能時,可以將該軌道的電子逐出,形成空穴;此時原子處于非穩定狀態,在極短的時間內,軌道的外層電子向空穴躍遷,使原子恢復至穩定狀態。 那么,在外層電子躍遷的過程中,兩個殼層之間的能量差就以特征X射線的形式溢出原位于某殼層的電子被激發稱為某系激發,產生的特征熒光X射線輻射稱為某系譜線。實際的物理過程十分復雜,例如L層有三個支能級,其中L1能級穩定,不產生躍遷,電子會由LII、LIII向K層躍遷,分別產生Kα1和Kα2。......閱讀全文
請問特征X射線如何產生?
一束高能粒子(射線)在與原子的相互作用下,如果其能量大于或等于原子某一軌道電子的結合能時,可以將該軌道的電子逐出,形成空穴;此時原子處于非穩定狀態,在極短的時間內,軌道的外層電子向空穴躍遷,使原子恢復至穩定狀態。 那么,在外層電子躍遷的過程中,兩個殼層之間的能量差就以特征X射線的形式溢出原位于
X射線是如何產生的
X射線的產生分兩種:1、電子的韌制輻射,用高能電子轟擊金屬,電子在打進金屬的過程中急劇減速,有加速的帶電粒子會輻射電磁波,電子能量很大,就可以產生x射線。2、原子的內層電子躍遷也可以產生x射線,電子從高能級往低能級躍遷時候會輻射光子,能級的能量差比較大,就發出x射線波段的光子。X射線是一種波長極短,
特征x射線與熒光x射線的產生機理有何異同
產生的機理不同,特征X射線是由電子撞擊金屬靶,使金屬原子中的K層L層M層等等層的核外電子被激發形成空位,外層電子躍入該空位,多余的能量產生X射線,熒光X射線則是由X射線或其他電磁波照射原子使原子核外電子激發形成空位,外層電子躍入空位產生X射線,二者都可以表示元素種類,但是產生一個是由電子引起,一個是
X射線的產生
X射線的產生?在X射線方面,情況完全不同:越高的加速電壓越有利于X射線的產生。X射線可以由能譜儀(EDS)捕獲和處理,從而對樣品的成分進行分析。?入射電子束中的電子與樣品中的原子相互作用,迫使目標樣品中的電子被打出。這樣樣品中就會有空穴生成,它由一個來自于同一原子的外層能量較高電子填充。這個過程要求
X射線的產生
電子的韌制輻射,用高能電子轟擊金屬,電子在打進金屬的過程中急劇減速,按照電磁學,有加速的帶電粒子會輻射電磁波,如果電子能量很大,比如上萬電子伏,就可以產生x射線,這是目前實驗室和工廠,醫院等地方用的產生x射線的方法。 原子的內層電子躍遷也可以產生x射線,量子力學的理論,電子從高能級往低能級躍遷
X射線管中X射線的產生原理
實驗室中X射線由X射線管產生,X射線管是具有陰極和陽極的真空管,陰極用鎢絲制成,通電后可發射熱電子,陽極(就稱靶極)用高熔點金屬制成(一般用鎢,用于晶體結構分析的X射線管還可用鐵、銅、鎳等材料).用幾萬伏至幾十萬伏的高壓加速電子,電子束轟擊靶極,X射線從靶極發出.
X射線熒光(XRF):理解特征X射線
什么是XRF? X射線熒光定義:由高能X射線或伽馬射線轟擊激發材料所發出次級(或熒光)X射線。這種現象廣泛應用于元素分析。 XRF如何工作? 當高能光子(X射線或伽馬射線)被原子吸收,內層電子被激發出來,變成“光電子”,形成空穴,原子處于激發態。外層電子向內層躍遷,發射出能量等于兩級能
X射線的產生原理
產生X射線的原理是用加速后的電子撞擊金屬靶,撞擊過程中電子突然減速,其損失的動能(以光子形式放出,形成X光光譜連續部分。通過加大加速電壓,電子攜帶的能量增大將金屬原子的內層電子撞出。于是內層形成空穴,外層電子躍遷回內層填補空穴,同時放出波長在0.1納米左右的光子。X射線的產生途徑是電子的韌制輻射,用
什么是連續X射線和特征X射線譜
連續X射線,是電子跑著跑著突然被原子核拉住,能量沒地兒放,于是放出X射線,這里放出的能量是連續的。特征X射線是處于特定能級的電子吸收光子,處于激發態,跑到低能級上放出的能量,故是一份一份的,具有明顯衍射峰。介紹陰極射線的電子流轟擊到靶面,如果能量足夠高,靶內一些原子的內層電子會被轟出,使原子處于能級
特征X射線的特點
學家們逐漸揭示了X射線的本質,作為一種波長極短,能量很大的電磁波,X射線的波長比可見光的波長更短(約在0.001~100 納米,醫學上應用的X射線波長約在0.001~0.1 納米之間),它的光子能量比可見光的光子能量大幾萬至幾十萬倍。因此,X射線除具有可見光的一般性質外,還具有自身的特性。正由于X射
X射線的產生及分類
產生 電子的韌制輻射,用高能電子轟擊金屬,電子在打進金屬的過程中急劇減速,按照電磁學,有加速的帶電粒子會輻射電磁波,如果電子能量很大,比如上萬電子伏,就可以產生x射線,這是目前實驗室和工廠,醫院等地方用的產生x射線的方法。 原子的內層電子躍遷也可以產生x射線,量子力學的理論,電子從高能級往低
產生x射線熒光的原理
處于激發態的原子,要通過電子躍遷向較低的能態轉化,同時輻射出被照物質的特征X射線,這種由入射X射線激發出的特征X射線,稱為熒光X射線,此種輻射又稱為熒光輻射。當紫外光或波長較短的可見光照射到某些物質時,這些物質會發射出各種顏色和不同強度的可見光,而當光源停止照射時,這種光線隨之消失。這種在激發光誘導
X射線的原理及產生
原理 產生X射線的最簡單方法是用加速后的電子撞擊金屬靶。撞擊過程中,電子突然減速,其損失的動能(其中的1%)會以光子形式放出,形成X光光譜的連續部分,稱之為制動輻射。通過加大加速電壓,電子攜帶的能量增大,則有可能將金屬原子的內層電子撞出。于是內層形成空穴,外層電子躍遷回內層填補空穴,同時放出波
概述X射線熒光光譜儀X射線的產生
根據經典電磁理論,運動的帶電粒子的運動速度發生改變時會向外輻射電磁波。實驗室中常用的X射線源便是利用這一原理產生的:利用被高壓加速的電子轟擊金屬靶,電子被金屬靶所減速,便向外輻射X射線。這些X射線中既包含了連續譜線,也包括了特征譜線。 1、連續譜線 連續光譜是由高能的帶電粒子撞擊金屬靶面時受
簡述產生x射線熒光的原理
處于激發態的原子,要通過電子躍遷向較低的能態轉化,同時輻射出被照物質的特征X射線,這種由入射X射線激發出的特征X射線,稱為熒光X射線,此種輻射又稱為熒光輻射。當紫外光或波長較短的可見光照射到某些物質時,這些物質會發射出各種顏色和不同強度的可見光,而當光源停止照射時,這種光線隨之消失。這種在激發光誘導
X射線攝影裝置的特征
1.一種X射線攝影裝置,其特征在于:具有使其徑向相對地面垂直地配置的保持體、可沿該保持體的周面回轉地受到保持的圓環狀的回轉體、及分別配置在該回轉體的內周的徑向相向位置的X射線源和2維X射線檢測器,使上述回轉體回轉,可獲得位于該回轉體內的空間內的被檢查體全周方向的X射線圖像數據。
請問X射線異物檢測儀有哪些特點?
1、聲光報警 滿足條件時發出聲音和報警燈信號 2、網絡接口 可以連接局域網,多個終端同時檢查行李 3、射線更安全 射線發射自動控制,避免誤發射算法和相位跟蹤機能, 4、人性化圖像監控 顯示器采用360°折疊、旋轉式,操作人員根據自身需要任意調整顯示器位置,減少疲勞 5、簡潔鼠標操作控制
3分鐘了解連續X射線與特征X射線
連續X射線,是電子跑著跑著突然被原子核拉住,能量沒地兒放,于是放出X射線,這里放出的能量是連續的;而特征X射線是處于特定能級的電子吸收光子,處于激發態,跑到低能級上放出的能量,故是一份一份的,具有明顯衍射峰。還有個是X射線熒光,這個是用X射線激發,電子放出光子,與特征X射線剛好是反的
美國X射線激光器成功產生第一束X射線
美國勞倫斯伯克利國家實驗室新升級的直線加速器相干光源(LCLS)X射線自由電子激光器(XFEL),成功產生了第一束X射線。此次升級的X射線閃光每秒高達100萬次,是其前身的8000倍,它改變了科學家探索原子尺度超快現象的能力,這些現象對于從量子材料到清潔能源等廣泛應用至關重要,將開創X射線研究的新時
美國X射線激光器成功產生第一束X射線
美國SLAC國家加速器實驗室新升級的直線加速器相干光源(LCLS)X射線自由電子激光器(XFEL),成功產生了第一束X射線。此次升級的X射線閃光每秒高達100萬次,是其前身的8000倍,它改變了科學家探索原子尺度超快現象的能力,這些現象對于從量子材料到清潔能源等廣泛應用至關重要,將開創X射線研究
X射線熒光的產生相關介紹
當一束粒子如X射線光子與一種物質的原子相互作用時,在其能量大于原子某一軌道電子的結合能時,就可從中逐出一個軌道電子而出現一個“空穴”,層中的這個“空穴”可稱作空位。原子要恢復到原來的穩定狀態,這時處于較高能級的電子將依據一定的規則躍遷而填補該“空穴”,這一過程將使整個原子的能量降低,因此可以自發
關于X射線的產生相關介紹
高速電子轟擊靶時,與靶物質的相互作用過程是很復雜的。一些高速電子進入到靶物質原子核附近,在原子核的強電場作用下,速度的量值和方向都發生變化,一部分動能轉化為X光子的能量(hv)輻射出去。這種輻射稱為軔致輻射( bremsstrahlung)。一些高速電子進入靶物質原子內部,如果與某個原子的內層電
特征X射線像的功能介紹
中文名稱特征X射線像英文名稱characteristic X-ray image定 義在掃描電子顯微鏡中,由電子探針激發樣品而產生的特征X射線對樣品所成的像。應用學科機械工程(一級學科),光學儀器(二級學科),電子光學儀器-電子光學儀器一般名詞(三級學科)
掃描電鏡之特征-X-射線
高能電子入射到樣品時,樣品中元素的原子內殼層(如 K、L 殼層)電子將被激發到較高 能量的外殼層,如 L 或 M 層,或直接將內殼層電子激發到原子外,使該原子系統的能量升 高——激發態。這種高能量態是不穩定的,原子較外層電子將迅速躍遷到有空位的內殼層, 以填補空位降低原子系統的總能量,并以特征
特征X射線像的功能介紹
中文名稱特征X射線像英文名稱characteristic X-ray image定 義在掃描電子顯微鏡中,由電子探針激發樣品而產生的特征X射線對樣品所成的像。應用學科機械工程(一級學科),光學儀器(二級學科),電子光學儀器-電子光學儀器一般名詞(三級學科)
概述x射線的基本特征
1 穿透性:X線波長很短,具有很強的穿透力,能穿透一般可見光不能穿透的各種不同密度的物質,并在穿透過程中受到一定程度的吸收即衰減。X線的穿透力與X線管電壓密切相關,電壓愈高,所產生的X線的波長愈短,穿透力也愈強;反之,電壓低,所產生的X線波長愈長,其穿透力也弱。另一方面,X線的穿透力還與被照體的
X射線熒光光譜儀的理論基礎X射線的產生
高速運動的電子與物體碰撞時,發生能量轉換,電子的運動受阻失去動能,其中一小部分(1%左右)能量轉變為X射線,而絕大部分(99%左右)能量轉變成熱能使物體溫度升高。 產生X射線源有同位素放射源、X射線管、激光等離子體、同步輻射和X射線激光等。
X射線的波長如何計算?
元素的原子受到高能輻射激發而引起內層電子的躍遷,同時發射出具有一定特殊性波長的X射線,根據莫斯萊定律,熒光X射線的波長λ與元素的原子序數Z有關,其數學關系如下:λ=K(Z? s) ?2式中K和S是常數。X射線的能量而根據量子理論,X射線可以看成由一種量子或光子組成的粒子流,每個光具有的能量為:E=h
由摩擦效應產生X射線的新型XRF技術
摩擦發光是一種通過機械作用(如拉動、撕裂、刮擦、壓碎或者不同材料間的摩擦等)而產生光的現象。例如,當敲碎蔗糖晶體時或者剝離膠帶時就能觀察到這種現象;這種現象從很久之前的古文明時期就被人們所發現。20世紀80年代,人們發現在X射線能量范圍內,真空管內的機械作用能夠產生光;2008年,一批來自美國加
元素含量與特征X射線強度的關系
不同元素特征X射線能量各不相同,依此進行定性分析;再根據特征X射線強度大小,可進行定量分析。 可用函數關系式表示為:C=f(k1I1, k2I2, k3I3...) 式中:Kn(n=1,2,3…)表示第n號元素的待定系數In(n=1,2,3…)表示第n號元素釋放的特征X射線強度。由此可知只要通