蛋白質芯片技術特點
⒈ 直接用粗生物樣品(血清、尿、體液)進行分析⒉ 同時快速發現多個生物標記物⒊ 小量樣品⒋ 高通量的驗證能力⒌ 發現低豐度蛋白質⒍ 測定疏水蛋白質: 與“雙相電泳加飛行質譜”相比,除了有相似功能外,并可增加測定疏水蛋白質⒎ 在同一系統中集發現和檢測為一體 特異性高 利用單克隆抗體芯片,可鑒定未知抗原/蛋白質,以減少測定蛋白質序列的工作量。8.可以定量 利用單克隆抗體芯片,由于結合至芯片上的抗體是定量的,故可以測定抗原量,但一般飛行質譜不用于定量分析。9.功能廣 I. 利用單克隆抗體芯片,可替代 Western Blot,Ⅱ. 利用單克隆抗體芯片,可互補流式細胞儀不足的功能,如將細胞溶解,可測定細胞內的抗原,而且靈敏度遠高于流式細胞儀)。......閱讀全文
蛋白質芯片技術特點
⒈ 直接用粗生物樣品(血清、尿、體液)進行分析⒉ 同時快速發現多個生物標記物⒊ 小量樣品⒋ 高通量的驗證能力⒌ 發現低豐度蛋白質⒍ 測定疏水蛋白質: 與“雙相電泳加飛行質譜”相比,除了有相似功能外,并可增加測定疏水蛋白質⒎ 在同一系統中集發現和檢測為一體 特異性高 利用單克隆抗體芯片,可鑒定未知抗原
蛋白質芯片的特點
⒈ 直接用粗生物樣品(血清、尿、體液)進行分析⒉ 同時快速發現多個生物標記物⒊ 小量樣品⒋ 高通量的驗證能力⒌ 發現低豐度蛋白質⒍ 測定疏水蛋白質: 與“雙相電泳加飛行質譜”相比,除了有相似功能外,并可增加測定疏水蛋白質⒎ 在同一系統中集發現和檢測為一體 特異性高 利用單克隆抗體芯片,可鑒定未知抗原
蛋白質芯片技術簡介
由于利用了DNA與互補的DNA或RNA結合的典型性質,?DNA?芯片在短時間內就取得了成功.?然而,?已經有關于mRNA?和蛋白質之間數量關系上的爭論,?而且實際上在細胞中參與各種不同反應的都是蛋白質.?因此,?如果能制造出蛋白質芯片而不是DNA芯片,?而且如果蛋白質表達強度和鍵合物能被發現,?就有
蛋白質芯片的功能特點
蛋白質芯片是一種高通量的蛋白功能分析技術,可用于蛋白質表達譜分析,研究蛋白質與蛋白質的相互作用,甚至DNA-蛋白質、RNA-蛋白質的相互作用,篩選藥物作用的蛋白靶點等。
蛋白質芯片技術固體芯片的構建方法
常用的材質有玻片、硅、云母及各種膜片等。理想的載體表面是滲透濾膜(如硝酸纖維素膜)或包被了不同試劑(如多聚賴氨酸)的載玻片。外形可制成各種不同的形狀。Lin,SR等人引采用APTS-BS3技術增強芯片與蛋白質的結合。
蛋白質芯片的技術原理
蛋白芯片技術的研究對象是蛋白質,其原理是對固相載體進行特殊的化學處理,再將已知的蛋白分子產物固定其上(如酶、抗原、抗體、受體、配體、細胞因子等),根據這些生物分子的特性,捕獲能與之特異性結合的待測蛋白(存在于血清、血漿、淋巴、間質液、尿液、滲出液、細胞溶解液、分泌液等),經洗滌、純化,再進行確認和生
生物芯片技術特點
20世紀90年代初開始實施的人類基因組計劃(Human genome project,HGP)取得了人們當初意料不到的巨大進展。目前已經測定了十多種微生物以及高等動植物的全基因組序列,海量的基因序列數據正在以前所未有的速度膨脹。一個現實的科學問題擺到了人們面前:如何研究如此眾多基因在生命過程中所
液相芯片技術的技術特點
1、高通量:將許多種不同熒光編碼的微球放在同一反應體系內,一次可同時檢測2-500種生理病理指標,這與傳統方法的逐個檢測相比是質的飛躍。2、高敏感性:流式熒光技術最高的檢測下限可達0.01 pg/ml,常規的酶聯免疫吸附試驗(ELISA)僅為μg級,比后者檢測的靈敏度提高10—100倍。3、線性范圍
蛋白質芯片技術信號檢測分析
直接檢測模式是將待測蛋白用熒光素或同位素標記,結合到芯片的蛋白質就會發出特定的信號,檢測時用特殊的芯片掃描儀掃描和相應的計算機軟件進行數據分析,或將芯片放射顯影后再選用相應的軟件進行數據分析。間接檢測模式類似于ELISA方法,標記第二抗體分子。以上兩種檢測模式均基于陣列為基礎的芯片檢測技術。該法操作
蛋白質芯片的技術優勢
⒈ 直接用粗生物樣品(血清、尿、體液)進行分析⒉ 同時快速發現多個生物標記物⒊ 小量樣品⒋ 高通量的驗證能力⒌ 發現低豐度蛋白質⒍ 測定疏水蛋白質: 與“雙相電泳加飛行質譜”相比,除了有相似功能外,并可增加測定疏水蛋白質⒎ 在同一系統中集發現和檢測為一體 特異性高 利用單克隆抗體芯片,可鑒定未知抗原
蛋白質芯片技術生物分子反應
使用時將待檢的含有蛋白質的標本如尿液、血清、精液、組織提取物等,按一定程序做好層析、電泳、色譜等前處理,然后在每個芯池里點入需要的種類。一般樣品量只要2-10μL即可。根據測定目的不同可選用不同探針結合或與其中含有的生物制劑相互作用一段時間,然后洗去未結合的或多余的物質,將樣品固定一下等待檢測即可。
生物芯片的技術特點
高通量提高實驗進程,利于顯示圖譜的快速對照和閱讀微型化減少試劑用量和反應液體積,提高樣品濃度和反應速度自動化減低成本和保證質量
生物芯片的技術特點
生物芯片是將生命科學研究中所涉及的不連續的分析過程(如樣品制備、化學反應和分析檢測),利用微電子、微機械、化學、物理技術、計算機技術在固體芯片表面構建的微流體分析單元和系統,使之連續化、集成化、微型化。
蛋白質芯片技術探針的制備方法
低密度蛋白質芯片的探針包括特定的抗原、抗體、酶、吸水或疏水物質、結合某些陽離子或陰離子的化學集團、受體和免疫復合物等具有生物活性的蛋白質。制備時常常采用直接點樣法,以避免蛋白質的空間結構改變。保持它和樣品的特異性結合能力。高密度蛋白質芯片一般為基因表達產物,如一個cDNA文庫所產生的幾乎所有蛋白質均
組織芯片的定義和技術特點
組織芯片(tissue chip),也稱組織微陣列(tissue microarrays),是生物芯片技術的一個重要分支,是將許多不同個體組織標本以規則陣列方式排布于同一載體(使用載玻片最多)上,進行同一指標的原位組織學研究。該技術自1998年問世以來,以其大規模、高通量、標準化等優點得到大范圍的推
蛋白質芯片技術應用于藥物篩選
疾病的發生發展與某些蛋白質的變化有關,如果以這些蛋白質構筑芯片,對眾多候選化學藥物進行篩選,直接篩選出與靶蛋白作用的化學藥物,將大大推進藥物的開發。蛋白質芯片有助于了解藥物與其效應蛋白的相互作用,并可以在對化學藥物作用機制不甚了解的情況下直接研究蛋白質譜。還可以將化學藥物作用與疾病聯系起來,以及藥物
生物芯片技術的主要特點
高通量提高實驗進程,利于顯示圖譜的快速對照和閱讀微型化減少試劑用量和反應液體積,提高樣品濃度和反應速度自動化減低成本和保證質量
生物芯片技術的主要特點
高通量提高實驗進程,利于顯示圖譜的快速對照和閱讀微型化減少試劑用量和反應液體積,提高樣品濃度和反應速度自動化減低成本和保證質量
基因芯片的技術特點和原理
DNA芯片又叫做基因芯片(gene chip)或基因微陣列(microarray),寡核酸芯片,或DNA微陣列,它是通過微陣列技術將高密度DNA片段陣列以一定的排列方式使其附著在玻璃、尼龍等材料上面。由于常用計算機硅芯片作為固相支持物,所以稱為DNA芯片。
蛋白質芯片技術應用與基因表達的篩選
基因表達的篩選AngelikaL.等人從人胎兒腦的cDNA文庫中選出92個克隆的粗提物制成蛋白質芯片,用特異性的抗體對其也進行檢測,結果的準確率在87%以上,而用傳統的原位濾膜技術準確率只達到63%。與原位濾膜相比,用蛋白質芯片技術在同樣面積上可容納更多的克隆,靈敏度可達到pg級。
蛋白質芯片技術在腫瘤檢測中的應用
【關鍵詞】? 蛋白質芯片;卵巢癌;前列腺癌;腫瘤;臨床檢驗 蛋白質芯片技術在腫瘤研究領域中進展最快。隨著腫瘤細胞的發生,腫瘤患者體內某些蛋白質會發生上調或下調,或產生新的與腫瘤關聯的異常蛋白,而蛋白質芯片技術可以描繪出患者體液中所有蛋白質表達情況。根據正常與異常的蛋白質表達譜的差異,從而建立腫瘤的指
蛋白質芯片技術應用于疾病診斷
蛋白質芯片技術在醫學領域中有著潛在的廣闊應用前景。蛋白質芯片能夠同時檢測生物樣品中與某種疾病或者環境因素損傷可能相關的全部蛋白質的含量情況,即表型指紋(phenomic fingerprint)。表型指紋對監測疾病的過程或預測,判斷治療的效果也具有重要意義。Ciphelxen Biosystems公
芯片實驗室的技術特點和應用
芯片實驗室是生物芯片技術發展的最終目標。它將樣品的制備、生化反應到檢測分析的整個過程集約化形成微型分析系統。由加熱器、微泵、微閥、微流量控制器、微電極、電子化學和電子發光探測器等組成的芯片實驗室已經問世,并出現了將生化反應、樣品制備、檢測和分析等部分集成的芯片)。“芯片實驗室”可以完成諸如樣品制備、
GaN-功率芯片的特點和技術優勢
GaN(氮化鎵)的特性與傳統Si(硅)有很大區別,例如開關速度比Si 快20 倍,體積和重量更小,某些系統里可以節能約40%。這是非常可觀的,對于實現“雙碳”目標很有助益。它的功率密度可以提升3 倍,如果搭配快充方案,充電速度提升3 倍以上,而且成本也很合理,相比Si 的BOM(物料清單)方案,系統
蛋白質芯片技術應用于抗原抗體檢測
在CavinM.等人的實驗中,蛋白質芯片上的抗原抗體反應體現出很好的特異性,在一塊蛋白質芯片上10800個點中,根據抗原抗體的特異性結合檢測到唯一的1個陽性位點。Cavin M.指出,這種特異性的抗原抗體反應一旦確立,就可以利用這項技術來度量整個細胞或組織中的蛋白質的豐富程度和修飾程度。其次利用蛋白
檢測自身免疫抗體的蛋白質芯片技術簡介
檢測自身免疫抗體的蛋白質芯片技術 自身免疫性疾病是由異常免疫反應引起的慢性退行性或炎癥性疾病。不同的自身免疫性疾病對機體的影響各有不同。例如,在多發性硬化癥中,自身免疫反應的侵害對象是中樞神經系統,而在克羅恩病中則是腸道。此外,同種疾病對不同個體的組織和器官的影響程度不盡相同。 此類
蛋白質芯片技術應用于生化反應的檢測
對酶活性的測定一直是臨床生化檢驗中不可缺少的部分。Cohen用常規的光蝕刻技術制備芯片、酶及底物加到芯片上的小室,在電滲作用中使酸及底物經通道接觸,發生酶促反應。通過電泳分離,可得到熒光標記的多肽底物及產物的變化,以此來定量酶促反應結果。動力學常數的測定表明該方法是可行的,而且,熒光物質穩定。Are
蛋白質芯片的種類
蛋白芯片主要有三類:蛋白質微陣列、微孔板蛋白質芯片、三維凝膠塊芯片等。
什么是蛋白質芯片?
蛋白質芯片是一種高通量的蛋白功能分析技術,可用于蛋白質表達譜分析,研究蛋白質與蛋白質的相互作用,甚至DNA-蛋白質、RNA-蛋白質的相互作用,篩選藥物作用的蛋白靶點等。
蛋白質芯片的制備
固體芯片的構建常用的材質有玻片、硅、云母及各種膜片等。理想的載體表面是滲透濾膜(如硝酸纖維素膜)或包被了不同試劑(如多聚賴氨酸)的載玻片。外形可制成各種不同的形狀。Lin,SR等人引采用APTS-BS3技術增強芯片與蛋白質的結合。探針的制備低密度蛋白質芯片的探針包括特定的抗原、抗體、酶、吸水或疏水物