<td id="wa4yw"><option id="wa4yw"></option></td>
  • <td id="wa4yw"><kbd id="wa4yw"></kbd></td><noscript id="wa4yw"><source id="wa4yw"></source></noscript>
    <bdo id="wa4yw"><kbd id="wa4yw"></kbd></bdo><input id="wa4yw"></input>
    <table id="wa4yw"><kbd id="wa4yw"></kbd></table>
  • <td id="wa4yw"><option id="wa4yw"></option></td>
    <option id="wa4yw"></option>
  • <table id="wa4yw"></table>

  • 核磁共振碳譜的特點和優點

    核磁共振氫譜的主要參數有化學位移、峰的裂分和耦合常數,、峰面積,這些參數都在核磁共振氫譜中反映出來,但核磁共振碳譜的外觀和氫譜有很大的差別。 核磁共振碳譜測定的是13C核,其同位素豐度只有大約1%,因此在碳譜中看不到碳碳之間的耦合裂分。再者,由于在測定碳譜時進行對氫的去耦,碳譜中沒有相連的氫原子而引起的譜峰的裂分,因此在碳譜中呈現的是一條條的譜線(特殊情況下可能出現鈍峰)。之所以采用對氫去耦是為了防止因氧對于碳(13C)譜線的裂分而產生的重疊(如果不對氫進行去耦操作,碳譜中譜峰的重疊會很嚴重),并提高碳譜的靈敏度。因此在碳譜中看不到峰組,只有譜線。在一般情況下,由于碳譜譜線的線寬都不寬,因而不測定譜線的積分數值。當然,譜線的高度大致反映碳原子的數目。 核磁共振碳譜的橫坐標是化學位移,縱坐標是譜峰的強度,其高度近似反映碳原予的數目。如果對碳原子的定量要求高,或者普通的全去耦碳譜的結果不夠明了,可......閱讀全文

    核磁共振碳譜實驗

    實驗方法原理2.去偶技術:為了簡化核磁共振的譜圖,把核與核之間直接、間接相互作用去掉所采取的技術。13C NMR 譜多采用寬帶去偶(BB 去偶),也叫質子噪聲全去偶。13C NMRBB 去偶可以是譜圖簡化,使交迭的偶合的多重峰,間并為單峰。每個峰代表一種類型的碳。同時,去偶可增強信噪比,多重峰的合并

    現在核磁共振碳譜-氫譜-樣品需要多少

    氫譜的話,分子量比較小的,十多毫克就可以。如果分子量大,那么相同質量下的摩爾數更小,所以要多用一些樣品,一般30-50毫克。如果樣品不夠的話,可以讓做核磁的人幫你多掃幾次。氫譜一般掃8次足夠,如果你信噪比不行,可以掃個32次或者64次。碳譜完全取決于你想掃多少次,一般100毫克起吧,樣品量不夠需要過

    核磁共振碳譜圖和核磁共振氫譜圖有何差別

    根據氫譜和碳譜,聯合得出,你的樣品是混合物。你的碳譜,把49ppm的峰當作溶劑峰,另外能夠測得37個碳,有3個可能是羰基C=O,芳香碳可能有8個,取代碳(碳上直接連O,N等)可能有3個,飽和碳可能有16個。但氫譜,第一,對應于峰的面積不是嚴格成比例,第二,與飽和碳、不飽和碳的構成分子結構,不能合拍。

    核磁共振碳譜的特點和優點

    ?核磁共振氫譜的主要參數有化學位移、峰的裂分和耦合常數,、峰面積,這些參數都在核磁共振氫譜中反映出來,但核磁共振碳譜的外觀和氫譜有很大的差別。? 核磁共振碳譜測定的是13C核,其同位素豐度只有大約1%,因此在碳譜中看不到碳碳之間的耦合裂分。再者,由于在測定碳譜時進行對氫的去耦,碳譜中沒有相連的氫原子

    核磁共振碳譜的特點和優點

    核磁共振氫譜的主要參數有化學位移、峰的裂分和耦合常數,、峰面積,這些參數都在核磁共振氫譜中反映出來,但核磁共振碳譜的外觀和氫譜有很大的差別。? 核磁共振碳譜測定的是13C核,其同位素豐度只有大約1%,因此在碳譜中看不到碳碳之間的耦合裂分。再者,由于在測定碳譜時進行對氫的去耦,碳譜中沒有相連的氫原子而

    影響碳的核磁共振譜和質子核磁共振譜化學位移因素

    化學位移是由屏蔽作用所引起的共振時磁場強度的移動現象.所以位移的大小與氫核(或碳核)所處的化學環境有關.影響氫核的位移因素有:1、電負性.與質子連接的原子電負性越大,質子信號就在越低的磁場出現2、磁各向異性效應.分子中之子與某一官能團的關系會影響質子的化學位移,可以是反磁屏蔽,可以是順磁屏蔽,情況比

    核磁共振譜儀核磁共振譜儀的組成部分

    通常是用電磁鐵和永久磁鐵產生均勻而穩定的磁場B。在兩磁極之間安裝一個探頭,探頭中央插入試樣管。試樣管在壓縮空氣的推動下,勻速而平穩地回旋。射頻振蕩器線圈安裝在探頭中,產生一定頻率的射頻輻射以激發核。它所產生的射頻場必須與磁場方向垂直。射頻接收線圈也安裝在探頭中,以來探測核磁共振時的吸收信號。另有一組

    實驗室分析儀器核磁共振碳譜的特點

    1、靈敏度低由于γc=?γH /4,且13C的天然豐度只有1.1%,因此13C核的測定靈敏度很低,大約是H核的1/6000,測定困難。2、 分辨能力高氫譜的化學位移δ值很少超過10ppm,而碳譜的δ值可以超過200ppm,最高可達600ppm。這樣,復雜和分子量高達400的有機物分子結構的精細變化都

    核磁共振氫譜實驗

    實驗方法原理1、核磁共振的概念具有磁性的原子核,處在某個外加靜磁場中,受到特定頻率的電磁波的作用,在它的磁能級之間發生的共振躍遷現象,叫核磁共振現象。2、核磁共振的共振條件①:具有磁性的原子核。(γ:某種核的磁旋比)②:外加靜磁場(H0)中)。③:一定頻率(υ)的射頻脈沖。④:公式:?3、 化學位移

    核磁共振譜的簡史

      核磁共振現象于1946年由E.M.珀塞耳和F.布洛赫等人發現。目前核磁共振迅速發展成為測定有機化合物結構的有力工具。目前核磁共振與其他儀器配合,已鑒定了十幾萬種化合物。70年代以來,使用強磁場超導核磁共振儀,大大提高了儀器靈敏度,在生物學領域的應用迅速擴展。脈沖傅里葉變換核磁共振儀使得13C、1

    核磁共振譜怎么分析

    核磁共振用NMR(Nuclear Magnetic Resonance)為代號。1.原子核的自旋核磁共振主要是由原子核的自旋運動引起的。不同的原子核,自旋運動的情況不同,它們可以用核的自旋量子數I來表示。自旋量子數與原子的質量數和原子序數之間存在一定的關系,大致分為三種情況,見表8-1。I為零的原子

    核磁共振譜圖解析

    這個是個掉書袋的工作啊,難度不大,但是內容很多。至少需要掌握官能團對化學位移的影響和解耦合現象。通過化學位移解析官能團,通過耦合產生的能級裂分推斷結構中各原子之間的連接關系。這個可以一門學分至少2的課。一時半會說不清啊。chemoffice可以模擬核磁譜,如果你只是為了論文作圖,不妨試試看。想了解的

    核磁共振氫譜解析

    化學環境這里指化合物中氫原子核外的電子分布情況、與該氫核鄰近的其他原子和成鍵電子的分布情況及其對該氫核的影響。化學環境不同的氫核(也就是結構環境不同的質子),其核磁共振譜圖中的化學位移不同。(1)由信號峰的組數可以推知有機物分子中含有幾種類型的氫(2)由各信號峰的強度(峰面積或積分曲線高度)比可以推

    核磁共振譜的應用

      核磁共振技術在有機合成中,不僅可對反應物或產物進行結構解析和構型確定,在研究合成反應中的電荷分布及其定位效應、探討反應機理等方面也有著廣泛應用。核磁共振波譜能夠精細地表征出各個氫核或碳核的電荷分布狀況,通過研究配合物中金屬離子與配體的相互作用,從微觀層次上闡明配合物的性質與結構的關系,對有機合成

    核磁共振譜的簡介

      核磁共振技術是有機物結構測定的有力手段,不破壞樣品,是一種無損檢測技術。從連續波核磁共振波譜發展為脈沖傅立葉變換波譜,從傳統一維譜到多維譜,技術不斷發展,應用領域也越廣泛。核磁共振技術在有機分子結構測定中扮演了非常重要的角色,核磁共振譜與紫外光譜、紅外光譜和質譜一起被有機化學家們稱為“四大名譜”

    核磁共振譜的原理

      根據量子力學原理,與電子一樣,原子核也具有自旋角動量,其自旋角動量的具體數值由原子核的自旋量子數I決定,原子核的自旋量子數I由如下法則確定:  1)中子數和質子數均為偶數的原子核,自旋量子數為0;  2)中子數加質子數為奇數的原子核,自旋量子數為半整數(如,1/2, 3/2, 5/2);  3)

    核磁共振譜的簡介

      核磁共振技術是有機物結構測定的有力手段,不破壞樣品,是一種無損檢測技術。從連續波核磁共振波譜發展為脈沖傅立葉變換波譜,從傳統一維譜到多維譜,技術不斷發展,應用領域也越廣泛。核磁共振技術在有機分子結構測定中扮演了非常重要的角色,核磁共振譜與紫外光譜、紅外光譜和質譜一起被有機化學家們稱為“四大名譜”

    如何看核磁共振譜

    核磁共振(NMR,Nuclear Magnetic Resonance)是基于原子尺度的量子磁物理性質。具有奇數質子或中子的核子,具有內在的性質:核自旋,自旋角動量。核自旋產生磁矩。NMR觀測原子的方法,是將樣品置于外加強大的磁場下,現代的儀器通常采用低溫超導磁鐵。核自旋本身的磁場,在外加磁場下重新

    核磁共振譜怎么分析

    之間的能量差為△E。一個核要從低能態躍遷到高能態,必須吸收△E的能量。讓處于外磁場中的自旋核接受一定頻率的電磁波輻射,當輻射的能量恰好等于自旋核兩種不同取向的能量差時,處于低能態的自旋核吸收電磁輻射能躍遷到高能態。這種現象稱為核磁共振,簡稱NMR。目前研究得最多的是1H的核磁共振,13C的核磁共振近

    核磁共振波譜儀核磁共振譜儀定義

    核磁共振(nuclear magnetic resonance, NMR)是磁矩不為零的原子核,在外磁場作用自旋能級發生蔡曼分裂,共振吸收某一定頻率的射頻輻射的物理過程。并不是是所有原子核都能產生這種現象,原子核能產生核磁共振現象是因為具有核自旋。原子核自旋產生磁矩,當核磁矩處于靜止外磁場中時產生進

    實驗室分析儀器核磁共振碳譜的解析步驟

    13C NMR解析步驟:1、確定分子式,計算不飽和度;2、排除溶劑峰及雜質峰;3、判斷分子結構的對稱性;4、判斷C原子結構以及級數;?5、確定C核和H核的對應關系;6、提出結構單元并給出結構式;?7、排除不合理的結構;8、與標準波譜圖譜進行比對。

    實驗室分析儀器核磁共振碳譜的測定方法

    1、 脈沖傅里葉變換法脈沖傅立葉變換法(Pulse Fourier Transform,簡稱PFT法)是利用短的射頻脈沖方式的射頻波照射樣品,并同時激發所有的13C核。由于激發產生了各種13C核所引起的不同頻率成分的吸收,并被接收器所檢測。2、 核磁共振碳譜中的幾種去偶技術13C核的天然豐度很低,分

    核磁共振譜的原理簡介

      根據量子力學原理,與電子一樣,原子核也具有自旋角動量,其自旋角動量的具體數值由原子核的自旋量子數I決定,原子核的自旋量子數I由如下法則確定:  1)中子數和質子數均為偶數的原子核,自旋量子數為0;  2)中子數加質子數為奇數的原子核,自旋量子數為半整數(如,1/2, 3/2, 5/2);  3)

    關于核磁共振譜的分類

      有兩大類:高分辨核磁共振譜儀和寬譜線核磁共振譜儀。高分辨核磁共振譜儀只能測液體樣品,譜線寬度可小于1赫,主要用于有機分析。寬譜線核磁共振譜儀可直接測量固體樣品,譜線寬度達10赫,在物理學領域用得較多。高分辨核磁共振譜儀使用普遍,通常所說的核磁共振譜儀即指高分辨譜儀。  按譜儀的工作方式可分連續波

    核磁共振氫譜實驗(一)

    實驗方法原理 1、核磁共振的概念具有磁性的原子核,處在某個外加靜磁場中,受到特定頻率的電磁波的作用,在它的磁能級之間發生的共振躍遷現象,叫核磁共振現象。2、核磁共振的共振條件①:具有磁性的原子核。(γ:某種核的磁旋比)②:外加靜磁場(H0)中)。③:一定頻率(υ)的射頻脈沖。④:公式:?3、 化學位

    核磁共振氫譜實驗(二)

    點擊:?(or 鍵入指令 ↙)觀察采樣通道和氘鎖通道,出現下圖 2.3:圖 2.3 觀察采樣通道和氘鎖通道④:鎖場點擊:?(or 鍵入指令 LOCK↙)鎖定磁場,出現下圖 2.4:圖 2.4 溶劑選取對話框。選取 CDCL3(氘代氯仿)點擊 OK。儀譜進行自動勻場。⑤: 探頭調諧?注意事項

    碳譜的作用

    碳譜是用來測碳的。碳譜能直接測定碳原子的類型和相對個數。而氫譜對碳鏈的信息是由與碳相連的氫推測出來的。碳譜提供碳原子的信息,比如連接官能團情況,碳的個數,取代方式(CH2,CH,CH3)等,與氫譜相比,最明顯的不同就是出峰像一條線,而且不用積分。相關信息介紹:根據碳峰強度可以分類:d、e、k、l各峰

    核磁共振波譜儀核磁共振譜儀發展現狀

    二十世紀后半葉,NMR技術和儀器發展十分快速,從永磁到超導,從60MHz到800MHz的NMR譜儀磁體的磁場差不多每五年提高一點五倍,這是被NMR在有機結構分析和醫療診斷上特有功能所促進的。現在有機化學研究中NMR已經成為分析常規測試手段,同樣,在醫療上MRI(核磁共振成像儀器)亦成為某些疾病的診斷

    核磁共振譜要注意哪些問題?

      1)雜質的來源:溶劑含雜質或重結晶的溶劑;未分離的化合物  2)單鍵帶有雙鍵性質時產生不等質子  3)互相變異構現象的存在:如乙酰丙酮中酮式與烯醇式的互變異構信號的同時存在  4)手性碳原子的存在導致不等價質子的存在  5)受阻旋轉:單鍵不能自由旋轉時,會產生不等價質子  6)加重水在測定共振譜

    核磁共振譜技術的歷史簡介

      核磁共振波譜法(Nuclear Magnetic Resonance Spectroscopy, NMR )NMR是研究原子核對射頻輻射(Radio-frequency Radiation)的吸收,它是對各種有機和無機物的成分、結構進行定性分析的最強有力的工具之一,有時亦可進行定量分析。  核磁

    <td id="wa4yw"><option id="wa4yw"></option></td>
  • <td id="wa4yw"><kbd id="wa4yw"></kbd></td><noscript id="wa4yw"><source id="wa4yw"></source></noscript>
    <bdo id="wa4yw"><kbd id="wa4yw"></kbd></bdo><input id="wa4yw"></input>
    <table id="wa4yw"><kbd id="wa4yw"></kbd></table>
  • <td id="wa4yw"><option id="wa4yw"></option></td>
    <option id="wa4yw"></option>
  • <table id="wa4yw"></table>
  • XVideos