首次實現了二維COFs的層間共軛連接
共價有機框架(Covalent Organic Frameworks, COFs)是一類由有機基元通過共價鍵連接而成的晶態有機多孔聚合物。其中,二維COFs通常是由剛性構筑單元連接形成的平面網絡結構通過層間π-π作用堆積構成。理論上,層間π-π電子云的重疊以及層內共軛連接使得載流子能夠在COF骨架中進行快速傳遞。然而,由于空間位阻效應往往導致二維COFs的層內共軛程度比較有限,而層間堆積又往往不夠緊密、充分,這些因素使得COFs實際導電性相對不足,限制了其在光電等領域的進一步發展。 近日,北京理工大學化學與化工學院馮霄等人報道了一系列骨架中包含聯二炔官能團的COFs(TAPFY-COF, TAPB-COF和TAPP-COF),利用聯二炔的拓撲聚合反應,在加熱下實現晶體到晶體的轉變,將層間柱狀排列的聯二炔官能團轉變為雙鍵三鍵交替的結構(TAPFY-COF-P, TAPB-COF-P和TAPP-COF-P),首次實現了二維CO......閱讀全文
首次實現了二維COFs的層間共軛連接
共價有機框架(Covalent Organic Frameworks, COFs)是一類由有機基元通過共價鍵連接而成的晶態有機多孔聚合物。其中,二維COFs通常是由剛性構筑單元連接形成的平面網絡結構通過層間π-π作用堆積構成。理論上,層間π-π電子云的重疊以及層內共軛連接使得載流子能夠在COF骨
研究實現單晶態sp2碳共軛有機框架聚合物的精準構筑
近期,中國科學院寧波材料技術與工程研究所提出了亞胺(C=N)到烯烴(C=C)連接鍵原位轉換策略,實現了單晶態sp2-碳共軛有機框架聚合物的精準構筑,有望推動新一代具有二維/三維拓撲結構的有機半導體材料的研制工作。這類材料在光催化、化學生物傳感器、有機光電子器件等領域展現出應用潛力。1月6日,相關研究
上海有機所在發展共價有機框架新連接方式方面取得進展
共價有機框架(Covalent Organic Frameworks,COFs)是一類由有機基元通過共價鍵連接而形成的晶態有機多孔聚合物,具有高比表面積、低密度、結構精確可調等特點,在物質吸附、儲存與分離、多相催化、傳感、光電等方面有廣泛的應用。自從2005年首例COF被報道以來,該領域發展迅速
共軛體系的共軛效應介紹
在單烯烴中碳碳雙鍵上的π電子的運動范圍,局限在兩個碳原子之間,稱為定域運動。在雙鍵單鍵雙鍵共軛的體系,如1,3-丁二烯分子中4個碳原子上的π電子的運動范圍,已不局限于兩個碳原子之間,而是在4個碳原子的分子軌道中運動,稱為離域現象。π電子的離域現象使得電子云的密度分布有所改變,內能降低,分子更趨于
寧波材料所等在sp2碳共軛有機框架材料構筑方面獲進展
二維共價有機框架(2D COFs)聚合物作為新一代有機半導體材料,具有可調的光電性質、開放的納米孔道和豐富的活性位點,在光電催化、能源轉換和有機電子等領域展現出應用前景。特別是碳碳雙鍵連接的共價有機框架聚合物(sp2c-COFs)憑借拓展的π共軛、優異的穩定性和高載流子遷移率等特性,成為COFs
什么是共軛效應?
共軛效應 (conjugated effect) ,又稱離域效應,是指共軛體系中由于原子間的相互影響而使體系內的π電子(或p電子)分布發生變化的一種電子效應。凡共軛體系上的取代基能降低體系的π電子云密度,則這些基團有吸電子共軛效應,用-C表示,如-COOH,-CHO,-COR;凡共軛體系上的取代
什么是共軛效應?
在單烯烴中碳碳雙鍵上的π電子的運動范圍,局限在兩個碳原子之間,稱為定域運動。在雙鍵單鍵雙鍵共軛的體系,如1,3-丁二烯分子中4個碳原子上的π電子的運動范圍,已不局限于兩個碳原子之間,而是在4個碳原子的分子軌道中運動,稱為離域現象。π電子的離域現象使得電子云的密度分布有所改變,內能降低,分子更趨于穩定
共軛效應的影響
所謂共軛效應,是指在分子中形成離域的pai鍵,使電子能在整個空間運動,從而降低了能量,使結構更穩定。對于一個產生共軛結構的反應,由于產物能量更低,會使得這個方向反應的趨勢更大,另外就是對化學鍵性質的改變,例如在CH2=CH-CH=CH2中,四個碳是共軛結構,從而使得鍵長平均化,第二個C-C鍵變短,類
什么是共軛效應
共軛效應又稱離域效應,是指共軛體系中由于原子間的相互影響而使體系內的π電子 (或p電子)分布發生變化的一種電子效應稱為共軛效應。共軛體系能降低體系π電子云密度的基團有吸電子的共軛效應,能增高共軛體系π電子云密度的基團有給電子的共軛效應。單雙建交替出現的體系或雙鍵碳的相鄰原子上有p軌道的體系均為共軛體
科學家在碳碳雙鍵連接的二維共價有機框架研究中獲進展
碳碳雙鍵連接的二維共價有機框架(v-2D-COFs)具有分子結構的可設計性、高比表面積、規整的孔道結構等諸多優點。相比于已大量研究的亞胺鍵和硼酸酯鍵連接的COFs,v-2D-COFs具有出色的面內共軛和高化學穩定性等優勢,是一類先進的多孔有機半導體材料,在光電催化、化學傳感、吸附分離、海水淡化、
寧波材料所在碳碳雙鍵連接的二維共價有機框架取得突破
碳碳雙鍵連接的二維共價有機框架(v-2D-COFs)具有分子結構的可設計性、高比表面積、規整的孔道結構等諸多優點。相比于已大量研究的亞胺鍵和硼酸酯鍵連接的COFs,v-2D-COFs具有出色的面內共軛和高化學穩定性等優勢,是一類先進的多孔有機半導體材料,在光電催化、化學傳感、吸附分離、海水淡化、貴金
有機所在異孔共價有機框架研究中取得進展
共價有機框架(Covalent Organic Frameworks, COFs)是一類結構規整的結晶性有機多孔聚合物,由構筑基元通過共價鍵連接形成拓展的二維或三維網格結構。其結構特點是內部周期性分布高度規整、納米尺度的孔道,這些孔道的大小和形狀可通過改變構筑基元的尺寸及對稱性來進行精確調節。基
雙喜臨門!侯賢燈吳鵬團隊研究成果刊登《德國應用化學》
分析測試百科網訊 近日,四川大學分析測試中心侯賢燈教授和吳鵬教授團隊分別發表的2篇高水平文章刊登在《德國應用化學》(德國應用化學)。侯賢燈教授團隊發表的文章題目是“Low power, low temperature and atmospheric pressure plasma‐induced
關于共軛效應的介紹
“共軛效應是穩定的”是有機化學的最基本原理之一。但是,自30年代起,鍵長平均化,4N+2芳香性理論,苯環D6h構架的起因,分子的構象和共軛效應的因果關系,π-電子離域的結構效應等已經受到了廣泛的質疑。其中,最引人注目的是Vollhardt等合成了中心苯環具有環己三烯幾何特征的亞苯類化合物,Sta
共軛二烯烴的應用
以丁二烯和異戊二烯為代表的碳四及碳五餾分用途越來越廣泛。丁二烯是C4餾分中最重要的組分之一,在石油化工烯烴原料中的地位僅次于乙烯和丙烯。C5餾分中最具有利用價值的是異戊二烯、間戊二烯、和環戊二烯三種共軛二烯烴,其中異戊二烯是主要產品之一。作為典型的共軛二烯烴,丁二烯和異戊二烯是合成橡膠的主要原料單體
什么是同共軛效應?
又稱p軌道與p軌道的σ型重疊。甲基以上的烷基,除有超共軛效應外,還可能產生同共軛效應。所有同共軛效應,原是指β碳原子上的C-H鍵與鄰近的π鍵間的相互作用。大量的化學活性和電子光譜的數據表明,在丙烯基離子和類似的烯羰基中,存在一種特殊的p-π或π-π共軛現象,即所謂同共軛效應: 在丙烯基離子中是
共軛雙鍵的概念
共軛雙鍵體系即雙鍵和單鍵交替的分子結構產生共軛效應。共軛效應的特點是化學鍵的極化作用可以沿共軛體系傳遞得很遠。例如:共軛的結果是電子的離域,共軛體系內單鍵變短而雙鍵變長,單雙鍵長度差別縮小乃至消失。這樣的體系比較穩定。如苯分子中六個碳-碳都是1.39A,而普通的碳-碳雙鍵的鍵長為1.34A,碳-碳單
共軛堿單分子消除反應
反應物先與堿作用,失去β氫原子,生成反應物的共軛堿碳負離子,然后從這個碳負離子失去離去基團并生成π鍵。在生成π鍵的步驟中只有共軛堿碳負離子參加。?共軛堿單分子消除反應(E1CB)也分兩步進行,反應速率不僅與反應物濃度成正比,也與堿的濃度有關,其關系較復雜,在多數情況下也成正比。一般說來,只有β碳原子
共軛亞油酸的基本簡介
共軛亞油酸(Conjugated linoleic acid,以下簡稱CLA)是亞油酸的所有立體和位置異構體混合物的總稱,可以看作是亞油酸的次生衍生物,分子式為C17H31COOH。共軛亞油酸的雙鍵可位于7和9,8和10,9和11,10和12,11和13,12和14位置上,其中每個雙鍵又有順式(ci
共軛體系的基本特點
在共軛體系中,雖然各原子間電子云密度不完全相同,但由于電子離域,使得單雙鍵的差別減小,鍵長有趨于平均化的傾向。共軛體系越長,單雙鍵差別越小。另外,由于電子離域作用,共軛體系能量降低,因而共軛體系比非共軛體系更加穩定。這可以從它們的氫化熱的數據得到證明。CH3CH=CHCH=CH2+2H2?——> C
關于共軛亞油酸的簡介
共軛亞油酸(Conjugated linoleic acid,以下簡稱CLA)是亞油酸的所有立體和位置異構體混合物的總稱,可以看作是亞油酸的次生衍生物,分子式為C17H31COOH。共軛亞油酸的雙鍵可位于7和9,8和10,9和11,10和12,11和13,12和14位置上,其中每個雙鍵又有順式(
關于共軛雙鍵的簡介
在有機化合物分子結構中單鍵與雙鍵相間的情況稱為共軛雙鍵。有機化合物分子結構中由一個單鍵隔開的兩個雙鍵。以C=C-C=C表示。 含有共軛雙鍵的分子比含孤立雙鍵的分子較為穩定,能量較小,共軛雙鍵中單鍵與雙鍵的鍵長趨于平均化。
共軛體系的相關介紹
一般形成共軛π鍵必須滿足兩個條件:共軛的原子必須同在一個平面上, 并且每個原子可以提供一個彼此平行的p軌道;總的π電子數小于參與形成離域π鍵的p軌道數的2倍。但有的實驗數據表明, 有些滿足這兩個條件的分子體系并不一定能形成離域π鍵而出現共軛體系所應有的性質。 共軛效應對物質的電性、顏色、酸堿性
簡述共軛體系的特點
在共軛體系中,雖然各原子間電子云密度不完全相同,但由于電子離域,使得單雙鍵的差別減小,鍵長有趨于平均化的傾向。共軛體系越長,單雙鍵差別越小。另外,由于電子離域作用,共軛體系能量降低,因而共軛體系比非共軛體系更加穩定。這可以從它們的氫化熱的數據得到證明。 CH3CH=CHCH=CH2+2H2 —
共軛亞油酸的主要結構
共軛亞油酸是一系列碳原子數為18,含有共軛雙鍵(-C=C-C=C-)的必需脂肪酸亞油酸的多種幾何和位置異構體混合物的總稱。共軛亞油酸的雙鍵在碳鏈上有多種位置排列方式,共軛雙鍵起始于羧基端的第8、9、10、11位碳原子。其主要位置異構有四種:8,10-、9,11-、10,12-、11,13-,由于共軛
正常共軛效應的原理介紹
又稱π-π共軛。是指兩個以上雙鍵(或叁鍵)以單鍵相聯結時所發生的π電子的離位作用。C.K.英戈爾德稱這種效應為中介效應,并且認為,共軛體系中這種電子的位移是由有關各原子的電負性和p軌道的大小(或主量子數)決定的。Y原子的電負性和它的p軌道半徑愈大,則它吸引π電子的能力也愈大,愈有利于基團-X=Y
關于共軛效應的特點介紹
沿共軛體系傳遞不受距離的限制。 共軛效應,由于形成共軛π鍵而引起的分子性質的改變叫做共軛效應。共軛效應主要表現在兩個方面。 ①共軛能:形成共軛π鍵的結果使體系的能量降低,分子穩定。例如CH2=CH—CH=CH2共軛分子,由于π鍵與π鍵的相互作用,使分子的總能量降低了,也就是說,CH2=CH—
關于共軛雙鍵的概述
共軛雙鍵體系即雙鍵和單鍵交替的分子結構產生共軛效應。共軛效應的特點是化學鍵的極化作用可以沿共軛體系傳遞得很遠。例如:共軛的結果是電子的離域,共軛體系內單鍵變短而雙鍵變長,單雙鍵長度差別縮小乃至消失。這樣的體系比較穩定。如苯分子中六個碳-碳都是1.39A,而普通的碳-碳雙鍵的鍵長為1.34A,碳-
共軛雙鍵的反應概念
含活潑雙鍵的化合物(親雙烯體)與含共軛雙鍵的化合物(雙烯體)之間發生1,4-加成生成六元環狀化合物的反應,稱為Diels-Alder反應,也稱雙烯合成?。反應過程(以1,3-丁二烯與乙烯間的反應為例)此反應為經環狀過渡態進行的周環反應,反應過程中舊鍵斷裂與新鍵形成協同進行。其反應機理以1,3-丁二烯
共軛二烯烴的雙烯合成
雙烯合成又稱狄爾斯-阿爾德(Diels-Alder反應)。共軛二烯烴和某些具有碳碳雙鍵、三鍵的不飽和化合物進行1,4一加成,生成環狀化合物的反應稱為雙烯合成反應。狄爾斯一阿爾德反應是協同反應,即舊鍵的斷裂和新鍵的形成是相互協調地在同一步驟中完成的。在光照或加熱的條件下,反應物分子彼此靠近,互相作用,